
Lecture 18: (Mixed) Integer Linear
Programming Cont.

Sam McCauley

November 12, 2021

Williams College

Admin

• How was Assignment 6?

• MM3 written; out once I do some testing (should be soon)

• No TA office hours this coming week

• No class Monday! Extra office hours instead (in TCL 306)

1

Upcoming schedule

• Current plan: Assignment 7 due Tuesday before Thanksgiving

• Assignment 7 is back to the usual: half coding in C, half
problem set questions

• Idea would be that it’s significantly shorter (in terms of time
spent) than most other assignments

• Is that difficult with your plans?

2

Plan for Today

• Wrap up branch and bound

• More mixed/integer linear programming examples!

3

Main MIP Solving Method:
Branch and Bound

Branching

• First, we divide the problem
into several subproblems

• Visualization is useful: just
partition the feasible region
into several pieces

• So far, still need to search
through all of them (same
as brute force)

4

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 = 4

3x1 + 2x2 = 11

2x1 − x2 = 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Partition
region

• Find best
solution in
orange piece

• When can we
avoid
searching in
purple?

5

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 = 4

3x1 + 2x2 = 11

2x1 − x2 = 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Upper bound
best solution
in purple

• If best possible
soln in purple
is worse than
best soln in
orange, can
skip

6

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 = 4

3x1 + 2x2 = 11

2x1 − x2 = 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

Safe to skip:
always gives
optimal solution.

But, can’t skip
anything in worst
case.

7

What do we need?

• Way to get a good solution in orange region: recurse!

• Or: can just do a simple greedy method, and come back to
refine the solution once we’ve ruled some others out.

• Way to upper bound best solution in purple region??

• Relax to an LP! Might not give a good upper bound, but will
give an upper bound (Recall: LPs are relatively fast to solve)

• (Outside scope of class) Duality can help

8

Branch and Bound Intuition

• Let us rule out big parts of the polytope (that is to say: lets us
avoid searching massive numbers of potential solutions.)

• “Everything in here has a bad objective function, so we can
skip it.” (This is the bound part)

• Many practical problems have large parts that are easy to skip.
(If we’re stacking groceries on pallets, no need to spend time
looking at solutions with bread on the bottom.)

• The more we branch (find good solutions), the more we can
bound (rule out parts of the search space whose solutions are
suboptimal)

9

Branch and Bound in Practice

• Advanced methods to figure out what parts of the polytope to
search, and how accurately to bound them

• The better your choices, the more you can rule out

• Other methods (greedy, LP cuts, duality, heuristic search, etc.)
can be integrated into this method

10

Branch and Bound in Practice

• Solvers are generally optimized for a given problem

• Dedicated solvers for TSP, Knapsack, that make branching
decisions and use bounding methods particularly effective for
that problem

• This is how you get the optimal, giant TSP tours

• Also some general-purpose solvers

11

Branch and Bound Summary

• Always gives an optimal solution

• May not find it quickly on tricky problems

• Two Towers performance was not great using GLPK. . . any
ideas why that is?

12

Solvers

These solvers have both LP and MIP solvers (using different
algorithms):

• GLPK (simplex, branch and bound). Open source. Standalone
program is fairly easy to use; can also access from C.

• CPLEX - IBM software for MIPs. Old but reliable. Proprietary.
Effective, but can be difficult to work with

• COIN-OR - open source solver

• Google OR tools - wrapper for COIN-OR. Has a really nice
TSP and Knapsack solvers. More user friendly than CPLEX or
COIN-OR.

13

More ILP and MIP Examples

Scheduling

• (Aside: scheduling is a major application of ILPs. Lots of
different techniques; this is just one example.)

• Assign n unit-cost jobs to machines.

• Each job ji has a type ti . Two jobs of the same type cannot be
assigned to the same machine.

• How can we schedule the jobs with the minimum number of
machines?

14

Scheduling Jobs with Types

• n jobs, job i has type ti

• Two jobs of same type
cannot be assigned to the
same machine

• Min number of machines

• What variables do we
want?

• Probably: keep track of
what job is assigned to
what machine

• si ,m = 1 if job i is assigned
to machine m

• How many machines do we
need?

• At most n. So have n2

variables: si ,m ∈ {0, 1}, for
1 ≤ i ≤ n and 1 ≤ m ≤ n.

15

Scheduling Jobs with Types

• n jobs, job i has type ti

• Two jobs of same type
cannot be assigned to the
same machine

• Min number of machines

• si ,m = 1 if job i assigned to
machine m

• Constraints?

• Want every job assigned to
exactly one machine

• For all 1 ≤ i ≤ n,∑n
m=1 si ,m = 1

16

Scheduling Jobs with Types

• n jobs, job i has type ti

• Two jobs of same type
cannot be assigned to the
same machine

• Min number of machines

• si ,m = 1 if job i assigned to
machine m

• Constraints?

• Two jobs of the same type
can’t be assigned to the
same machine

• Rephrased: for every
machine m, no two jobs of
the same type can be
assigned to m

17

Scheduling Jobs with Types

• n jobs, job i has type ti

• Two jobs of same type
cannot be assigned to the
same machine

• Min number of machines

• si ,m = 1 if job i assigned to
machine m

• Constraints?

• For every machine i , no
two jobs of the same type
can be assigned to i

• For all 1 ≤ m ≤ n,for all
jobs i1 and i2 with the
same type ti1 = ti2 ,
si1,m + si2,m ≤ 1

• (Up to n3 constraints.
Also: constraints depend
on the input.)

18

Scheduling Jobs with Types

• n jobs, job i has type ti

• Two jobs of same type
cannot be assigned to the
same machine

• Min number of machines

• si ,m = 1 if job i assigned to
machine m

• Objective?

• Let cm be the cost of
machine m. Want cm = 1
if there is a job assigned to
machine i , cm = 0
otherwise.

• min
∑n

m=1 cm

• Constraint for cm?

• For all jobs i and all
machines m, cm ≥ si ,m

19

Scheduling Jobs with Types

Objective: min
∑n

m=1 cm

Constraints:

cm ≥ si ,m

For all 1 ≤ m ≤ n,for all jobs i1 and i2 with the same type ti1 = ti2 ,
si1,m + si2,m ≤ 1

For all 1 ≤ i ≤ n,
∑n

m=1 si ,m = 1

si ,m ∈ {0, 1} for all 1 ≤ i ≤ n, 1 ≤ m ≤ n.

20

Travelling Salesman

• Find minimum-length cycle
through vertices such that
each is visited exactly once

• Given: set of n points, for
each pair of points i and j

the cost ci ,j to get from i to
j . Have cj ,i = ci ,j

21

Travelling Salesman

• Variables?

• ei ,j = 1 if the TSP tour has an edge from point i to point j

• ei ,j ∈ {0, 1} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

• Objective?

•
∑n

i=1
∑n

j=1 ei ,jci ,j

22

Travelling Salesman

• Constraints?

• Need to ensure that the edges with ei ,j = 1 form a cycle
through all points

• Observation: in a cycle, all points have one edge coming in,
and one edge going out

• For all i ,
∑

j 6=i ei ,j = 1 and
∑

6̀=i e`,i = 1

• Is this sufficient?

23

Travelling Salesman

• Unfortunately, no—one
in/one out just means a set
of cycles.

• Can we give another
constraint to fix this?

• Yes, but it’s nontrivial:

• Add n − 1 new variables ui
(for i = 2, . . . , n)

• ui − uj + nei ,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for
2 ≤ i ≤ n

24

Travelling Salesman

• ui − uj + nei ,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for
2 ≤ i ≤ n

• single cycle → LP solution:

• If we have a simple cycle
visiting every vertex, can we
create an assignment that
satisfies the constraints?

• Yes: if i is the kth visited
city (after city 1), set
ui = k

25

Travelling Salesman (High Level)

• ui − uj + nei ,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for
2 ≤ i ≤ n

• LP solution → single cycle:

• Sum the above inequalities
for any k-length cycle not
including city 1

26

One last example

• Idea here: we talked about how LPs can only really “AND”
constraints

• With ILP and MIP, can do something much more like “OR”:
• One of these constraints must be satisfied, or
• Pick one of these items (in an assignment)

• Simple example: optimal eating while being able to choose
your diet

27

Food Pyramid

28

Choice of diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit one of these diet goals?

29

MIP for Choice of Diet

• How to encode which diet I choose?

• x1 = 1 if I choose the first diet; x2 = 1 if I choosed the second
diet; x3 = 1 if I choose the third diet

• Make sure I choose exactly one diet?

• xi ∈ {0, 1}

• x1 + x2 + x3 = 1

30

MIP for Choice of Diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• How can I encode this?

• Previously: 25.8p + 2.5r + 13.5c ≥ 46 . . .

• Hint: if x1 = 0, I want to do something to these constraint so
that they’re always satisfied

• 25.8p + 2.5r + 13.5c + 46(1− x1) ≥ 46

31

Choice of diet LP

• Diet options:
• 46 g protein; 130 g

carbs; or
• 20 g protein; 200 g

carbs; or
• 100 g protein; 30 g carbs

• 100g Peanuts: 25.8g
protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein,
28.7g carbs, $.79

• 100g Chicken: 13.5g
protein, 0g carbs, $.70

min 1.61p + .79r + .7c

• 25.8p + 2.5r + 13.5c + 46(1−
x1) ≥ 46;

• 16.1p+28.7r+130(1−x1) ≥ 130

• 25.8p + 2.5r + 13.5c + 20(1−
x2) ≥ 20;

• 16.1p+28.7r+200(1−x2) ≥ 200

• 25.8p + 2.5r + 13.5c + 100(1−
x3) ≥ 100;

• 16.1p+28.7r +30(1− x2) ≥ 30

• x1 + x2 + x3 = 1

• p, r , c ≥ 0; p, r ∈ Z; xi ∈ {0, 1}

32

Technique summary

• When want to choose one of several constraints to satisfy:

• multiply the indicator variable for whether or not you choose
by a large enough constant to make the constraint trivial

• Need to be able to bound the constraint to do this!

• What happens with rounding when you use this technique?

33

Conclusion

Takeaways

• What is an ILP/MIP?

• When do you need an ILP/MIP? When does an LP suffice?

• Using ILP/MIPs to describe a computational problem

• Some ILP/MIP techniques

• Branch and bound: how can a heuristic give you an optimal
solution?

34

	Main MIP Solving Method: Branch and Bound
	More ILP and MIP Examples
	Conclusion

