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How was Assignment 67

MM3 written; out once | do some testing (should be soon)

No TA office hours this coming week

No class Monday! Extra office hours instead (in TCL 306)



Upcoming schedule

Current plan: Assignment 7 due Tuesday before Thanksgiving

Assignment 7 is back to the usual: half coding in C, half
problem set questions

Idea would be that it's significantly shorter (in terms of time
spent) than most other assignments

Is that difficult with your plans?



Plan for Today

e Wrap up branch and bound

e More mixed/integer linear programming examples!



Main MIP Solving Method:
Branch and Bound



e First, we divide the problem

into several subproblems

e Visualization is useful: just
partition the feasible region
into several pieces

e So far, still need to search

through all of them (same
as brute force)




Branching and Bounding
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Branching and Bounding
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Branching and Bounding
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What do we need?

e Way to get a good solution in orange region: recurse!

e Or: can just do a simple greedy method, and come back to

refine the solution once we've ruled some others out.
e Way to upper bound best solution in purple region??

e Relax to an LP! Might not give a good upper bound, but will
give an upper bound (Recall: LPs are relatively fast to solve)

e (Outside scope of class) Duality can help



Branch and Bound Intuition

e Let us rule out big parts of the polytope (that is to say: lets us
avoid searching massive numbers of potential solutions.)

e "“Everything in here has a bad objective function, so we can
skip it.” (This is the bound part)

e Many practical problems have large parts that are easy to skip.
(If we're stacking groceries on pallets, no need to spend time
looking at solutions with bread on the bottom.)

e The more we branch (find good solutions), the more we can
bound (rule out parts of the search space whose solutions are
suboptimal)



Branch and Bound in Practice

e Advanced methods to figure out what parts of the polytope to
search, and how accurately to bound them

e The better your choices, the more you can rule out
e Other methods (greedy, LP cuts, duality, heuristic search, etc.)

can be integrated into this method
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Branch and Bound in Practice

Solvers are generally optimized for a given problem

Dedicated solvers for TSP, Knapsack, that make branching
decisions and use bounding methods particularly effective for

that problem

This is how you get the optimal, giant TSP tours

Also some general-purpose solvers
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Branch and Bound Summary

e Always gives an optimal solution
e May not find it quickly on tricky problems
e Two Towers performance was not great using GLPK. . .any

ideas why that is?
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Solvers

These solvers have both LP and MIP solvers (using different
algorithms):

e GLPK (simplex, branch and bound). Open source. Standalone
program is fairly easy to use; can also access from C.

e CPLEX - IBM software for MIPs. Old but reliable. Proprietary.
Effective, but can be difficult to work with

e COIN-OR - open source solver

e Google OR tools - wrapper for COIN-OR. Has a really nice
TSP and Knapsack solvers. More user friendly than CPLEX or
COIN-OR.
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More ILP and MIP Examples




Scheduling

(Aside: scheduling is a major application of ILPs. Lots of
different techniques; this is just one example.)

Assign n unit-cost jobs to machines.

Each job j; has a type t;. Two jobs of the same type cannot be
assigned to the same machine.

How can we schedule the jobs with the minimum number of
machines?
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e n jobs, job i has type t;

e Two jobs of same type
cannot be assigned to the

same machine

e Min number of machines

Scheduling Jobs with Types

What variables do we
want?

Probably: keep track of
what job is assigned to
what machine

sim = 1 if job i is assigned
to machine m

How many machines do we

need?

At most n. So have n?

variables: s; , € {0,1}, for
1<i<nand1<m<n.
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Scheduling Jobs with Types

e n jobs, job i has type t; e Constraints?

e Two jobs of same type e Want every job assigned to
cannot be assigned to the exactly one machine
same machine e Forall1<i<n,

e Min number of machines P i = b

e sim=1if job i assigned to
machine m
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Scheduling Jobs with Types

e n jobs, job i has type t; e Constraints?

e Two jobs of same type e Two jobs of the same type
cannot be assigned to the can't be assigned to the
same machine same machine

e Min number of machines e Rephrased: for every

e Sim=1if job i assigned to machine m, no two jobs of
e lTE the same type can be

assigned to m
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n jobs, job i has type t;
Two jobs of same type
cannot be assigned to the
same machine

Min number of machines
sim = 1 if job i assigned to
machine m

Scheduling Jobs with Types

Constraints?

For every machine i, no
two jobs of the same type
can be assigned to /

For all 1 < m < n,for all
jobs i1 and i» with the
same type tj, = t;,,

Siy,m + Sip,m < 1

(Up to n® constraints.
Also: constraints depend
on the input.)
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n jobs, job i has type t;

Two jobs of same type
cannot be assigned to the
same machine

Min number of machines
sim = 1 if job i assigned to
machine m

Scheduling Jobs with Types

Objective?

Let ¢, be the cost of
machine m. Want ¢,, = 1
if there is a job assigned to
machine /, ¢,;, =0
otherwise.

miny p_1 Cm

Constraint for ¢,,?

For all jobs i and all
machines m, ¢y, > Si m
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Scheduling Jobs with Types

Objective: min>_" 1 cm

Constraints:

Cm = Si.m

For all 1 < m < n,for all jobs i1 and ip with the same type t;, = t;,,

Siy,m + Sir,m < 1
Forall1<i<n >, ;sim=1

m=1

sim€{0,1} forall1<i<n 1<m<n.
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Travelling Salesman

e Find minimum-length cycle
through vertices such that
each is visited exactly once

e Given: set of n points, for
each pair of points i and j
the cost ¢;j to get from i to
J- Have ¢ i =c¢i;
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Travelling Salesman

Variables?

eij = 1 if the TSP tour has an edge from point i to point j

eij€{0,1}forl<i<nandl1<j<n

Objective?

n n
Z;:1 j=1 €ijCi,j
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Travelling Salesman

e Constraints?

e Need to ensure that the edges with e;; = 1 form a cycle
through all points

e Observation: in a cycle, all points have one edge coming in,

and one edge going out

e For all /, Zj#i eij =1 and Z#, e =1

e |s this sufficient?
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Travelling Salesman

e Unfortunately, no—one
in/one out just means a set
of cycles.

e Can we give another
. b 5 i constraint to fix this?

; « o Yes, but it's nontrivial:

e Add n — 1 new variables u;

I il i (fOr i:2,...,n)
o ui—uj+nej<n—1for
2<i#j<n, and

e 1 <u<n-—1for
2<i<n
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Travelling Salesman

° u,-—uj+ne,-7j§n—1for
2<i#j<n,and

e 1<y <n—1for
2<i<n

e single cycle — LP solution:

] “ e If we have a simple cycle

visiting every vertex, can we

: n m create an assignment that
satisfies the constraints?

e Yes: if jis the kth visited
city (after city 1), set
u; = k
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Travelling Salesman (High Level)

ui — uj+ nejj < n—1 for
2<j#j<n, and

] p a i e 1<y <n—1for
AN RO 0
LP solution — single cycle:

Sum the above inequalities

I it jiss

for any k-length cycle not
including city 1
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One last example

e |dea here: we talked about how LPs can only really “AND"

constraints
e With ILP and MIP, can do something much more like “OR™

e One of these constraints must be satisfied, or
e Pick one of these items (in an assignment)

e Simple example: optimal eating while being able to choose
your diet
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Food Pyramid

KEY
0 Fat (naturally occurring and added)
K Sugars (added)

Thisa symbols show fats and added sugars in foods.

Fats, Oils & Sweets
USE SPARINGLY

Milk, Yogurt & Meat, Poultry, Fish, Dry Beans,
Cheese Group Eggs & Nuts Group
2-3 SERVINGS 2.3 SERVINGS
Vegetable Group | Fruit Group
3.5 SERVINGS 2.4 SERVINGS

Bread, Cereal,
Rice & Pasta
Group
611
SERVINGS
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Choice of diet

You need to satisfy one of the three following diet goals:

e 46 grams of protein and 130 grams of carbs every day; or
e 20 grams of protein and 200 grams of carbs every day; or
e 100 grams of protein and 30 grams of carbs every day

100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

100g Rice: 2.5g protein, 28.7g carbs, $.79

100g Chicken: 13.5g protein, Og carbs, $.70

What is the cheapest way you can hit one of these diet goals?
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MIP for Choice of Diet

e How to encode which diet | choose?

e x; = 1 if | choose the first diet; xo = 1 if | choosed the second
diet; x3 = 1 if | choose the third diet

e Make sure | choose exactly one diet?
e x; € {0,1}

e x1+x+x3=1
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MIP for Choice of Diet

You need to satisfy one of the three following diet goals:

e 46 grams of protein and 130 grams of carbs every day; or
e 20 grams of protein and 200 grams of carbs every day; or
e 100 grams of protein and 30 grams of carbs every day

How can | encode this?

Previously: 25.8p + 2.5r + 13.5¢ > 46 ...

Hint: if x; = 0, | want to do something to these constraint so
that they're always satisfied

25.8p+2.5r + 13.5¢ + 46(1 — x1) > 46

31



Choice of diet LP

. . min1.61p + .79r 4+ .7c
e Diet options:
. 25.8 2.5 13.5 46(1 —
e 46 g protein; 130 g ¢ 9 Bl Eha

X1) > 46;
carbs; or
e 20 g protein: 200 g o 16.1p+28.7r+130(1—x) > 130
carbs; or e 25.8p+2.5r +13.5¢+20(1 —
e 100 g protein; 30 g carbs xz) > 20;

e 16.1p+28.7r+200(1—x2) > 200

e 25.8p +2.5r+13.5¢ +100(1 —
x3) > 100;

e 16.1p+28.7r+30(1 —x2) > 30

e 100g Peanuts: 25.8g
protein, 16.1g carbs, $1.61

e 100g Rice: 2.5g protein,
28.7g carbs, $.79

e x1+x2+x3=1
[ 100g ChICken 135g e p,r,c 2 O, p,r€ Zy x; € {07 1}
protein, Og carbs, $.70
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Technique summary

e When want to choose one of several constraints to satisfy:

multiply the indicator variable for whether or not you choose
by a large enough constant to make the constraint trivial

Need to be able to bound the constraint to do this!

What happens with rounding when you use this technique?
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Conclusion




What is an ILP/MIP?

When do you need an ILP/MIP? When does an LP suffice?

Using ILP/MIPs to describe a computational problem

Some ILP/MIP techniques

Branch and bound: how can a heuristic give you an optimal
solution?
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