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Admin

• Mini-midterm 2 over!

• Assignments 3 and 4 graded

• Please delete your text files from the lab computer if you’re
not using them (can keep zip version)

• Assignment 6 out tonight. All LPs! Some where I ask to give
and prove correct; some where I ask you to use GLPK to solve

• Class of 60’s speaker Jon Kleinberg tonight and tomorrow
• Very modern approach to algorithms, wrote the 256 textbook
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Linear Programming

A linear program consists of:

• a linear objective function, and

• a set of linear constraints.

Goal: achieve the best possible objective function value while
satisfying the constraints
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Solving Problems with Linear
Programming



Example 3 (hard): Group Grading

• The CS TAs at Williams have decided that all TAs will help do
the grading for all assignments due in a given week.

• Each assignment is due during one of n hour-long time slots,
and there are m courses total.

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many (fractional) TAs
should work on each course j to minimize the average time it
takes each submission to be graded?
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Example 3 (hard): Group Grading

First: it sounds like we should make a variable for the actual
assignment we want. Let xi ,j be the number of TAs working on
course j in time slot i .

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Example 3 (hard): Group Grading

Can we constrain xi ,j?

Yep,
∑

j xi ,j ≤ ti

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Example 3 (hard): Group Grading

What if we can’t finish all the work in a given timeslot? We need to
keep track of what spills over. Let ri ,j be the remaining work for
course j after time slot i .

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot i for course j ,
we assign xi ,j TAs, so they can grade a total of xi ,j/hj assignments.

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?

7



Example 3 (hard): Group Grading

Time slot i starts with ri−1,j assignments remaining for course j .
The TAs can grade xi ,j/hj assignments, and wi ,j new assignments
are turned in. Therefore, ri ,j ≥ ri−1,j + wi ,j − xi ,j/hj .

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Cost?

• We want to minimize the average time it takes each
submission to be graded.

• The total time all submissions of course j wait is
∑

i ri ,j

• The total number of submissions is
∑

i

∑
j wi ,j

• Need ri ,j ≥ 0!

• Objective function: minimize
(∑

j

∑
i ri ,j

)
/
(∑

i

∑
j wi ,j

)
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Example 3: Final LP

Objective: min
(∑

j

∑
i ri ,j

)
/
(∑

j

∑
i wi ,j

)
Constraints:

For all i :
∑

j xi ,j ≤ ti

For all i > 0 and all j : ri ,j = ri−1,j + wi ,j − xi ,j/hj

Remember that
hj is a constant!

r0,j = w0,j − x0,j/hj

For all i and all j : xi ,j ≥ 0 and ri ,j ≥ 0

• What are the variables? What are the constants?

• Is this an LP? What is its size? How many dimensions?

• How can we go from a feasible LP solution to a real-world
schedule?
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Structure of Linear Programs



Canonical Form

• Without loss of generality, can always put all constants on the
right; can ensure variable appears once per line

• Some solvers need other constraints (like all ≤); ours doesn’t
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Extreme Points

• Where can a solution lie?

• Can’t ever be inside the
polytope

• In fact, don’t need to look
along a line either

• All solns at extreme point

• Defn: does not lie on a line
between two other points in
the polytope
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Solving Linear Programs (Theory)



First Steps

• For small programs, draw
them out and solve them

• This is not a bad tactic for
solving these by hand
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Some theory

• O(n) time for constant dimensions

• Also: polynomial time algorithm in general!

• “Ellipsoid method” (Khachiyan 1979)

• “Interior point methods” (Karmarkar 1984)

• Best known currently: Cohen, Lee, Song, Zhang 2019

• “Strongly” polynomial still open
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Simplex Algorithm

• Invented by Dantzig in 1947

• Simple, most common in practice

• Works extremely well on real-world data

• Exponential time in the worst case

• We will just see a tiny piece of this algorithm
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How do we search through extreme points?

• From one extreme point, we
can follow an edge to
another

• Pros: local!

• Has a nice algebraic
formulation

• But when do we know that
we have the best solution?
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Going through extreme points

• One option: keep track of
which ones we’ve seen, stop
once we’ve seen all of them

• This takes up lots and lots
of space!

• Not very efficient

• No opportunities for
heuristics:

• even if we see the
solution early, need to
search through all of
them
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Key Lemma

Lemma 1
An extreme point is an optimal solution if every adjacent extreme
point has a strictly worse objective value.

• That is to say: a local maximum is always a global maximum!

• Adjacent means connected by a line

• More formally: “adjacent” extreme points can be determined
by loosening one constraint and tightening another

• Called a “pivot”
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Simplex: searching through extreme points

• Start at some extreme point

• While there is an adjacent extreme point with the same or
better objective function:

• Go to that extreme point

• Return current extreme point
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Does this work?

• By our lemma, if it finishes, the value it returns is correct.

• When might it not finish?

• First: need to find the initial extreme point

• Significant area of research; usually easy in practice

• Can the algorithm loop infinitely?

• Yes. Also significant area of research, can generally be avoided
in practice.
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Simplex Algorithm

• This is what simplex does:

• Greedily searches through
points

• Does not keep track of
previous points

• Very good at getting to the
right place quickly in
practice
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Where to pivot?

• Simplex performance depends on what extreme point we go to
next (“pivot rule”)

• How can we choose?

• One option: greedily choose best objective function

• Not bad, but not as good as you’d think

• 70 years of optimization have gotten us really effective rules

• Some work well for certain types of problems (i.e. network
flows)
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How fast is it?

• Classic result: there exists an LP with n variables and n
constraints such that simplex can take Ω(2n) time (Klee Minty
1972)

• (But subexponential pivot rule by Hansen and Zwick in 2015!)

• Even if all constants are in {1, 2, 3, 4}

• Good news: bad cases are very very carefully crafted,
extremely rare in practice
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Using an LP Solver



LP Solver in this course

• GLPK: open source solver

• Can be called from C or as a standalone program
• We’ll be using as a standalone program
• Arguably easier. (Downside: can’t program the generation of

the LP. Have to write it out by hand.)

• (Expensive) industrial programs may have better performance,
especially for specific types of LPs
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What does GLPK do

• Best effort to solve the problem (uses very optimized simplex,
plus some other stuff)

• Gives you solution, tells you whether or not it’s optimal.

• Remember that simplex may know when it arrives at an
optimal solution

• (More advanced techniques can also be used)

• So far: basically solves everything I’ve tried instantly, optimally

• Full disclosure: I’ve used this program a few times but I don’t
know it in and out, especially corner cases
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Formatting LP in this class

• We’ll be using the CPLEX format

• Pretty much looks like writing the LP in text

• Note: all inequalities may be written as strict inequalities: you
can write < rather than <=. But <= is always meant!
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CPLEX LP format summary: objective function

• (Must) start with objective function

• write maximize or minimize

• Then just write the function! (Can name it if you want with
name:)

• Example: minimize obj: - x1 + 2 x2 - 3.5 x3
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CPLEX LP format summary: Constraints

• Must write subject to

• Then, one constraint per line (again, can name)

• Must have one constant on right side of equation

Subject To
one: y1 + 3 a1 - a2 - b >= 1.5
y2 + 2 a3 + 2 a4 - b >= -1.5
two : y4 + 3 a1 + 4 a5 - b <= +1
.20y5 + 5 a2 - b = 0
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CPLEX LP format summary: bounding variables

• Special section to give bounds on individual variables

• Useful! (and optional; variables are positive by default)

• Write bounds then a sequence of bounds (one per variable)

• +inf and -inf for infinity; free for unbounded variable

Bounds
-inf <= a1 <= 100
-100 <= a2
b <= 100
x2 = +123.456
x3 free
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CPLEX LP format summary: finishing it up

• Starting next week: another section for specifying integer
variables

• Don’t need that section for now!

• Then write end keyword
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Running the LP Solver

• glpsol --cpxlp [LP file] -o [desired output file]

• glpsol --cpxlp mylp.lp -o mylp.out

• Outputs solution to output file (text format!! Despite the
extension)

• Also outputs a bunch of information to the command line

• Let’s look at an example!
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GLPK Example Usage

Example 1: Diet

• You need to eat 46 grams of protein and 130 grams of carbs
every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit your diet goals? First, let’s
formulate the LP together on the board
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GLPK Example

Now let’s make the file

• Start with objective function

• Then subject to, then constraints

• Finally, bounds followed by bounds

• Then end
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Conclusion/Summary for Linear
Programming



What Takeaways do I want?

• What is an LP?

• How to take a problem and phrase it as a linear program?

• Use GLPK to solve problems

• Basics of: how does the simplex algorithm work?

Brear in mind: we can solve some neat problems now. Next week
we’ll get to MIPs where the real magic lies.
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More LP Practice



Another practice problem

• Very LP-y

• We’ll prove correctness (fairly boring in this case—practice for
more interesting LPs)

• And we’ll run it through the solver to get the optimal solution
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Allocating farm resources

Walnut Orchard has two farms that grow wheat and corn. Because
of differing soil conditions, there are differences in the yields and
costs of growing crops on the two farms. The yields and costs are

Farm 1 Farm 2

Corn yield/acre 500 bushels 650 bushels
Cost/acre of corn $100 $120
Wheat yield/acre 400 bushels 350 bushels
Cost/acre of wheat $90 $80

Each farm has 100 acres available for cultivation; 11,000 bushels of
corn and 7000 bushels of wheat must be grown. Goal: minimize
cost.
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Walnut Orchard Solution

Hopefully we came up with something like:

• c1, c2, w1, w2 are number of acres for corn and wheat on farm
1 and 2 respectively

• Objective: minimize 100c1 + 120c2 + 90w1 + 80w2

• Constraints:
• c1 + w1 ≤ 100 c2 + w2 ≤ 100
• 500c1 + 650c2 ≥ 11000
• 400w1 + 350w2 ≥ 7000
• c1, c2,w1,w2 ≥ 0
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Proving Correctness

As usual, we’ll split into two claims.

• Let’s say there’s an LP solution c1, c2, w1, and w2 with
objective value C . Then there exists a way for Walnut Orchard
to allocate its resources with total cost C .

• Let’s say there exists a way for Walnut Orchard to grow wheat
and corn that has total cost C . Then there exists an LP
solution with objective value C .
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First claim

Let’s say there’s an LP solution c1, c2, w1, and w2 with objective
value C . Then there exists a way for Walnut Orchard to allocate its
resources with total cost C .

Proof: Let’s say that Walnut Orchard grows c1 acres of corn on
farm 1 (resp. c2,w1,w2). Let’s verify that all the constraints are
satisfied:

• Each farm has 100 acres available for cultivation

The total number of acres we use for farm 1 is c1 + w1. Since
c1 + w1 ≤ 100 this constraint is met for farm 1.

The total number of acres we use for farm 2 is c2 + w2. Since
c2 + w2 ≤ 100 this constraint is met for farm 2.
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First claim

Let’s say there’s an LP solution c1, c2, w1, and w2 with objective
value C . Then there exists a way for Walnut Orchard to allocate its
resources with total cost C .

Proof: Let’s say that Walnut Orchard grows c1 acres of corn on
farm 1 (resp. c2,w1,w2). Let’s verify that all the constraints are
satisfied:

• 7000 bushels of wheat must be grown

We grow w1 acres of wheat on farm 1, leading to 400w1 bushels.
We grow w2 acres of wheat on farm 2, leading to 350w2 bushels.

Since we required 400w1 + 350w2 ≥ 7000 the constraint is satisfied.
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First claim

Let’s say there’s an LP solution c1, c2, w1, and w2 with objective
value C . Then there exists a way for Walnut Orchard to allocate its
resources with total cost C .

Proof: Let’s say that Walnut Orchard grows c1 acres of corn on
farm 1 (resp. c2,w1,w2). Let’s verify that all the constraints are
satisfied:

• 11000 bushels of corn must be grown

We grow c1 acres of corn on farm 1, leading to 500c1 bushels. We
grow c2 acres of corn on farm 2, leading to 650c2 bushels.

Since we required 500c1 + 650c2 ≥ 11000 the constraint is satisfied.
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First claim

Let’s say there’s an LP solution c1, c2, w1, and w2 with objective
value C . Then there exists a way for Walnut Orchard to allocate its
resources with total cost C .

Proof: Let’s say that Walnut Orchard grows c1 acres of corn on
farm 1 (resp. c2,w1,w2). Let’s check the cost:

Cost for Walnut Orchard is 100c1 + 120c2 + 90w1 + 80w2. This is
exactly equal to C .
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Second claim

Let’s say there exists a way for Walnut Orchard to grow wheat and
corn that has total cost C . Then there exists an LP solution with
objective value C .

Proof: Define c1 to be the number of acres of corn grown by
Walnut Orchards on farm 1 while achieving cost C (resp.
c2,w1,w2). Let’s check the cost:

Cost for Walnut Orchard is 100c1 + 120c2 + 90w1 + 80w2. This is
exactly equal to the objective value of the LP.
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Second claim

Let’s say there exists a way for Walnut Orchard to grow wheat and
corn that has total cost C . Then there exists an LP solution with
objective value C .

Proof: Define c1 to be the number of acres of corn grown by
Walnut Orchards on farm 1 while achieving cost C (resp.
c2,w1,w2). Let’s make sure all constraints are met:

• Must have c1 + w1 ≤ 100 and c2 + w2 ≤ 100.

Each farm has 100 acres available for cultivation. By definition, the
total number of acres we use for farm 1 is c1 + w1; this must be at
most 100. The same argument works for farm 2.
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Second claim

Let’s say there exists a way for Walnut Orchard to grow wheat and
corn that has total cost C . Then there exists an LP solution with
objective value C .

Proof: Define c1 to be the number of acres of corn grown by
Walnut Orchards on farm 1 while achieving cost C (resp.
c2,w1,w2). Let’s make sure all constraints are met:

• Must have 400w1 + 350w2 ≥ 7000.

We grow w1 acres of wheat on farm 1, leading to 400w1 bushels.
We grow w2 acres of wheat on farm 2, leading to 350w2 bushels.
7000 bushels of wheat must be grown in total on the farm, so the
equation must be satisfied.
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Second claim

Let’s say there exists a way for Walnut Orchard to grow wheat and
corn that has total cost C . Then there exists an LP solution with
objective value C .

Proof: Define c1 to be the number of acres of corn grown by
Walnut Orchards on farm 1 while achieving cost C (resp.
c2,w1,w2). Let’s make sure all constraints are met:

• Must have 500c1 + 650c2 ≥ 11000.

We grow c1 acres of corn on farm 1, leading to 500c1 bushels. We
grow c2 acres of corn on farm 2, leading to 650c2 bushels. 11000
bushels of wheat must be grown in total on the farm, so the
equation must be satisfied.
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Let’s solve the LP using our solver!
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One more LP

• Let’s solve a difficult optimization problem with our LP solver

• Idea: a middle school closed. Students from 6 different areas
need to be assigned to the three other existing middle schools
in the area. How can we do that?

• Need to assign all students; make sure students are reasonably
well-balanced; minimized cost of transportation

• One problem: will wind up with fractional number of students
assigned. How can we resolve this?

• Round!
• Does make our solution not optimal. But we’ll discuss: by how

much?
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Setting up school problem

• Three schools with capacities 900, 1100, 1000

• Grades 6, 7, and 8

• Each grade assigned to a school must consist of between 30%
and 36% of the school’s total assignment. (Can’t give one
school all eighth graders.)

• Let’s look at numbers in terms of what students are from each
area, and how much it costs to get students from an area to a
school.
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School Problem Numbers

Area 6th 7th 8th School 1 School 2 School 3

1 144 171 135 $300 0 $700
2 222 168 210 - $400 $500
3 165 176 209 $600 $300 $200
4 98 140 112 $200 $500 -
5 195 170 135 0 - $400
6 153 126 171 $500 $300 0

• Three schools with capacities 900, 1100, 1000

• Each grade assigned to a school must consist of between 30%
and 36% of the school’s total assignment. (Can’t give one
school all eighth graders.)

• minimize total cost
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Our solution is fractional!

• What can we do?

• Round up or down; make sure constraints are still met

• How much can this affect our cost?

• Each school will probably end up with ≈ 1 student away from
optimal. Unlikely to be more than $1000 or so off.

• When is this strategy not a good idea?

• When rounding changes the solution by a larger amount
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