
Lecture 15: Linear Programming and
Optimization

Sam McCauley

November 9, 2021

Williams College

Admin

• Make sure to pull for small test files

• Refer to emails about small typos (most important: Problem 4
should be upper bounding that the assumption is INcorrect)

1

What is an algorithmic problem?

• Constraints

• Objective

2

Next four lectures

• Frameworks to phrase algorithmic problems

• Allow practical solutions for a wide variety of
otherwise-intractable problems

• “Optimization” problems that come up frequently in practice

• This topic is much older and much much broader than
anything else we’ve covered

• Focus for this class: using linear programming and integer
linear programming (and their solvers) to obtain optimal
solutions to difficult problems. (Won’t be focusing on
structure, mathematical properties.)

3

Context

“ I have a strong interest in the question of where math-
ematical ideas come from, and a strong conviction that
they always result from a fairly systematic process—and
that the opposite impression, that some ideas are incred-
ible bolts from the blue that require “genius” or “sudden
inspiration” to find, is an illusion.

Timothy Gowers”
4

History

• Starts with a legend

5

George Dantzig

• Father of Linear
Programming

• Worked for military during
World War 2

• Invented the simplex
algorithm

6

Linear Programming

A linear program consists of:

• a linear objective function, and

• a set of linear constraints.

Goal: achieve the best possible objective function value while
satisfying the constraints

7

Why linear programming

• Black-box tools to solve important optimization problems that
would be otherwise intractable

• Probably the most powerful tool you’ll learn about to solve
difficult algorithmic problems

• More powerful (in a sense) than dynamic programming

• Strictly generalizes network flows

• Essentially gives a free method to solve continuous
optimization problems—as well as some others

• 2004 survey: 85% of fortune 500 companies report using linear
programming

8

Linearity

• Let’s say our variables are x1, . . . xn.

• A linear function is the sum of a subset of these variables, each
(possibly) multiplied by a constant.

• Linear inequality: this can be set ≥,≤, or = a final constant.

• Example: 4x1 − 3x2 ≤ 7 is linear

• Example 2: 4x1x2 + x1 = 3 is not

• Example 3: |√x3 − x7| ≥ 5 is not

9

Linear Programming

A linear program consists of:

• a linear objective function, (min or max) and

• a set of constraints, which are linear inequalities.

Goal: achieve the best possible objective function value while
satisfying the constraints

10

Example

Objective:
max 3x1 + 4x2

Subject to:
2x1 + x2 ≤ 120
x1 + 3x2 ≤ 180
x1 + x2 ≤ 80
x1 ≥ 0

x2 ≥ 0

11

Feasibility

• An LP is feasible if there
exists an assignment of
variables that satisfies the
constraints

• Nontrivial result: feasibility
is not trivial to determine.
In the worst case, it is as
difficult as solving the entire
LP.

12

Matrix Representation

Objective:

[3 4]

Subject to:
2 1
0 3
0 1
−1 0
0 −1


[

x1

x2

]
≤


120
180
80
0
0



• Can represent with a matrix
and vector

• Useful!

• I don’t plan to use this
representation again in this
class

13

Visual representation

• We can plot these inequalities

• Works best for instances with 2 or 3 variables

• We’ll use extensively as it gives good intuition

14

Plotting an LP

Objective:

max 3x1 + 4x2

Subject to:

2x1 + x2 ≤ 120
x1 + 3x2 ≤ 180
x1 + x2 ≤ 80
x1 ≥ 0

x2 ≥ 0

15

Why are we looking at this?

• Many problems can be phrased as a linear program

• Linear programs can be solved efficiently

• For today: take as a given that efficient solving is possible.
How can we use linear programming to solve these problems?

• Essentially a reduction: similar to using Network Flow to solve
problems

16

Solving Problems with Linear
Programming

Optimization Problems

Example 1: Diet

• You need to eat 46 grams of protein and 130 grams of carbs
every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit your diet goals?

17

Diet Problem

How can we phrase this as a linear program?

• Let p be the amount of peanuts, r be the amount of rice, and
c be the amount of chicken you buy.

• Then what is our objective function?

• Answer: 1.61p + .79r + .7c

• Do we want to maximize or minimize this?

• min 1.61p + .79r + .7c

18

Diet Problem Constraints

min 1.61p + .79r + .7c

• Protein: 25.8p + 2.5r + 13.5c ≥ 46

• Carbs: 16.1p + 28.7r ≥ 130

• Anything else? p ≥ 0, r ≥ 0, c ≥ 0

Reminder:

• You need to eat 46 grams of protein and 130 grams of carbs
every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

19

Diet Problem Constraints

min 1.61p + .79r + .7c

• Protein: 25.8p + 2.5r + 13.5c ≥ 46

• Carbs: 16.1p + 28.7r ≥ 130

• Anything else? p ≥ 0, r ≥ 0, c ≥ 0

Solution: p = 0, r = 2.9216..., c = 2.86636...

So we want to buy about 293g of rice, and 287g of chicken, for
total cost $4.32

20

Diet Problem Constraints

min 1.61p + .79r + .7c

• Protein:
25.8p + 2.5r + 13.5c ≥ 46

• Carbs: 16.1p+ 28.7r ≥ 130

• Anything else? p ≥ 0,
r ≥ 0, c ≥ 0

Solution: p = 0, r = 2.9216...,
c = 2.86636...
So we want to buy about 293g
of rice, and 287g of chicken, for
total cost $4.32

21

Example 2: Facility Location

• Given coordinates for n roommates
(x1, y1), (x2, y2), . . . , (xn, yn)

• Goal: find location for a router that minimizes the average
distance to each roommate

• Distance from (x , y) to (xi , yi) is |x − xi |+ |y − yi |

• Cannot have distance more than 10 from any roommate

22

Example 2: Facility Location

Objective:
Constraints:

(x − 3) + (y − 4) ≤ 10

(−x + 3) + (y − 4) ≤ 10

(−x + 3) + (−y + 4) ≤ 10

(x − 3) + (−y + 4) ≤ 10

(x − 13) + (y − 5) ≤ 10

(−x + 13) + (y − 5) ≤ 10

(−x + 13) + (−y + 5) ≤ 10

(x − 13) + (−y + 5) ≤ 10

Can’t make
objective function.

Idea: add
new variables!

• Given roommates at (3, 4)
and (13, 5)

• Goal: find location for a
router that minimizes the
average distance to each
roommate

• Distance from (x , y) to
(xi , yi) is |x − xi |+ |y − yi |

• Cannot have distance > 10
from any roommate

23

Example 2: Facility Location

Objective: min d1 + d2

Constraints:

(x − 3) + (y − 4) ≤ d1

(−x + 3) + (y − 4) ≤ d1

(−x + 3) + (−y + 4) ≤ d1

(x − 3) + (−y + 4) ≤ d1

(x − 13) + (y − 5) ≤ d2

(−x + 13) + (y − 5) ≤ d2

(−x + 13) + (−y + 5) ≤ d2

(x − 13) + (−y + 5) ≤ d2

d1 ≤ 10

d2 ≤ 10

• Given roommates at (3, 4)
and (13, 5)

• Goal: find location for a
router that minimizes the
average distance to each
roommate

• Distance from (x , y) to
(xi , yi) is |x − xi |+ |y − yi |

• Cannot have distance > 10
from any roommate

24

Example 2: Facility Location

Objective: min d1 + d2

Constraints:

x + y − d1 ≤ 7

−x + y − d1 ≤ 1

−x − y − d1 ≤ −7
x − y − d1 ≤ −1
x + y − d2 ≤ 18

−x + y − d2 ≤ −8
−x − y − d2 ≤ −18
x − y − d2 ≤ 8

• Given roommates at (3, 4)
and (13, 5)

• Goal: find location for a
router that minimizes the
average distance to each
roommate

• Distance from (x , y) to
(xi , yi) is |x − xi |+ |y − yi |

• Cannot have distance > 10
from any roommate

25

Proving Correctness

• How can we show that the above LP works?
• Idea: an LP is feasible if and only if it corresponds to a correct

router placement
• 1st: if there exists a feasible LP solution has values d1, d2, x , y

then there exists a router placement at (x , y) with distance at
most d1 and d2 from roommates 1 and 2, with d1 ≤ 10 and
d2 ≤ 10

• 2nd: any placement of a router at location (x , y), with
distance d1 ≤ 10 and d2 ≤ 10 from the first and second
roommate respectively corresponds to a feasible LP solution
with variables d1, d2, x , y

• If we can prove these claims then solving this LP solves the
router placement problem: we get the min total distance
placement

26

Proving Correctness

Lemma 1

If there exists a feasible LP solution with variables d1, d2, x , y then
a router at (x , y) has distance at most d1 and d2 from roommates
1 and 2, with d1 ≤ 10 and d2 ≤ 10

Proof: Router at (x , y) has distance d̂1 = |x − 3|+ |y − 4| from
roommate 1. Because the LP soln is feasible, we have:

(x − 3) + (y − 4) ≤ d1 (−x + 3) + (y − 4) ≤ d1

(−x + 3) + (−y + 4) ≤ d1 (x − 3) + (−y + 4) ≤ d1

Since d̂1 is equal to the left side of one of these equations, d̂1 ≤ d1.
Furthermore, since the LP solution is feasible, d1 ≤ 10, so d̂1 ≤ 10.

Same argument works for roommate 2
27

Proving Correctness

Lemma 2

Any placement of a router at location (x , y), with distance d1 ≤ 10
and d2 ≤ 10 from the first and second roommate respectively
corresponds to a feasible LP solution with variables d1, d2, x , y

Proof summary: We have d1, d2 ≤ 10 by definition. We need to
show the roommate constraints are satisfied. Let’s focus on d1. We
have d1 = |x − 3|+ |y − 4|.

For any x , y we have:

x − 3 ≤ |x − 3| −x + 3 ≤ |x − 3|
y − 4 ≤ |y − 4| −y + 4 ≤ |y − 4|

Substituting, all equations for d1 are satisfied.

28

Proving Correctness

• Therefore, the best LP
solution gives the best
router placement!

• So we can solve this
problem by solving an LP

• Can we add new
roommates? Yes!

• New constraints? Yes—if
they’re linear

29

Taking a step back

• Useful: can generalize (weighting, additional constraints,
additional dimensions)

• Some intuition: what can you encode with an LP?
• Continuous: cannot explicitly require integer values
• AND not OR: can add new constraints. But, can’t just select

one to satisfy
• (Example: distance absolute value worked because d1 ≥ 3− x

AND d1 > x − 3. Cannot do something like d > 5 OR d < 3.)

Examples of problems that are harder or impossible to generalize to
an LP:

• Peanuts come in packs; can only buy an integer number
• Buying two routers for the house. (Each roommate needs to

connect to one OR the other)

30

Taking a step back

Things to note

• Can (and often want to) create new variables when making an
LP

• Each instance of the problem may require a new LP

• Example: for a general roommate at (x1, y1) instead of (3, 4): I
would have x + y − d1 ≤ x1 + y1, rather than x + y − d1 ≤ 7,

• Note that the parameters of the specific instance are constants
as far as the LP is concerned (x1 and y1 are “constants” in the
above)

• You may multiply these constants, do precomputations on
them—whatever you want so long as you get a final correct
LP for the given instance

31

What can you solve with LP?

• Clasically: optimization problems (resource allocation, network
flow like problems)

• Magic wand if your problem is continuous and has linear
constraints and objective

• Also odd things like shortest path, even things like sorting

32

Back to router example

• Let’s say we used Euclidean distance with the router. Can we
use an LP then?

•
d((x , y), (x1, y1)) =

√
(x − x1)2 + (y − y1)2)

• Don’t need the square root to minimize...

• But still doesn’t seem possible

33

Example 3 (hard): Group Grading

• The CS TAs at Williams have decided that all TAs will help do
the grading for all assignments due in a given week.

• Each assignment is due during one of n hour-long time slots,
and there are m courses total.

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many (fractional) TAs
should work on each course j to minimize the average time it
takes each submission to be graded?

34

Example 3 (hard): Group Grading

First: it sounds like we should make a variable for the actual
assignment we want. Let xi ,j be the number of TAs working on
course j in time slot i .

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?

35

Example 3 (hard): Group Grading

Can we constrain xi ,j?

Yep,
∑

j xi ,j ≤ ti

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?

36

Example 3 (hard): Group Grading

What if we can’t finish all the work in a given timeslot? We need to
keep track of what spills over. Let ri ,j be the remaining work for
course j after time slot i .

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?

37

Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot i for course j ,
we assign xi ,j TAs, so they can grade a total of xi ,j/hj assignments.

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?

38

Example 3 (hard): Group Grading

Time slot i starts with ri−1,j assignments remaining for course j .
The TAs can grade xi ,j/hj assignments, and wi ,j new assignments
are turned in. Therefore, ri ,j ≥ ri−1,j + wi ,j − xi ,j/hj .

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of
hj TA hours worth of time

• wi ,j is the number of assignments from course j that arrive at
time slot i

• Question: for each time slot i , how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?

39

Cost?

• We want to minimize the average time it takes each
submission to be graded.

• The total time all submissions of course j wait is
∑

i ri ,j

• The total number of submissions is
∑

i

∑
j wi ,j

• Need ri ,j ≥ 0!

• Objective function: minimize
(∑

j

∑
i ri ,j

)
/
(∑

i

∑
j wi ,j

)

40

Example 3: Final LP

Objective: min
(∑

j

∑
i ri ,j

)
/
(∑

j

∑
i wi ,j

)
Constraints:

For all i :
∑

j xi ,j ≤ ti

For all i and all j : ri ,j ≥ ri−1,j + wi ,j − xi ,j/hj

Remember that
hj is a constant!

For all i and all j : xi ,j ≥ 0 and ri ,j ≥ 0

• What are the variables? What are the constants?

• Is this an LP? What is its size? How many dimensions?

• How can we go from a feasible LP solution to a real-world
schedule?

41

Structure of Linear Programs

Canonical Form

• Without loss of generality, can always put all constants on the
right

• All constraints are = without loss of generality

• Use auxiliary variables to achieve ≤ or ≥

• 3x − 3 ≥ 0 becomes: 3x − a0 = 3 for some a0 ≥ 0

• x − 3+ y − 4 ≤ d1 becomes: x + y − d1 + a1 = 7 for some
a1 ≥ 0

• Necessary for some LP solvers. I believe we won’t need this for
our solver.

42

Extreme Points

• Where can a solution lie?

• Can’t ever be inside the
polytope

• In fact, don’t need to look
along a line either

• All solns at extreme point

• Defn: does not lie on a line
between two other points in
the polytope

43

	Solving Problems with Linear Programming
	Structure of Linear Programs

