Lecture 15: Linear Programming and Optimization

Sam McCauley

November 9, 2021
Williams College

Admin

- Make sure to pull for small test files
- Refer to emails about small typos (most important: Problem 4 should be upper bounding that the assumption is INcorrect)

What is an algorithmic problem?

- Constraints
- Objective

Next four lectures

- Frameworks to phrase algorithmic problems
- Allow practical solutions for a wide variety of otherwise-intractable problems
- "Optimization" problems that come up frequently in practice
- This topic is much older and much much broader than anything else we've covered
- Focus for this class: using linear programming and integer linear programming (and their solvers) to obtain optimal solutions to difficult problems. (Won't be focusing on structure, mathematical properties.)

Context

661 have a strong interest in the question of where mathematical ideas come from, and a strong conviction that they always result from a fairly systematic process-and that the opposite impression, that some ideas are incredible bolts from the blue that require "genius" or "sudden inspiration" to find, is an illusion.

Timothy Gowers

- Starts with a legend

George Dantzig

- Father of Linear

Programming

- Worked for military during World War 2
- Invented the simplex algorithm

Linear Programming

A linear program consists of:

- a linear objective function, and
- a set of linear constraints.

Goal: achieve the best possible objective function value while satisfying the constraints

Why linear programming

- Black-box tools to solve important optimization problems that would be otherwise intractable
- Probably the most powerful tool you'll learn about to solve difficult algorithmic problems
- More powerful (in a sense) than dynamic programming
- Strictly generalizes network flows
- Essentially gives a free method to solve continuous optimization problems-as well as some others
- 2004 survey: 85% of fortune 500 companies report using linear programming

Linearity

- Let's say our variables are $x_{1}, \ldots x_{n}$.
- A linear function is the sum of a subset of these variables, each (possibly) multiplied by a constant.
- Linear inequality: this can be set \geq, \leq, or $=$ a final constant.
- Example: $4 x_{1}-3 x_{2} \leq 7$ is linear
- Example 2: $4 x_{1} x_{2}+x_{1}=3$ is not
- Example 3: $\left|\sqrt{x_{3}}-x_{7}\right| \geq 5$ is not

Linear Programming

A linear program consists of:

- a linear objective function, (min or max) and
- a set of constraints, which are linear inequalities.

Goal: achieve the best possible objective function value while satisfying the constraints

Example

Objective:

$$
\max 3 x_{1}+4 x_{2}
$$

Subject to:

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 120 \\
x_{1}+3 x_{2} & \leq 180 \\
x_{1}+x_{2} & \leq 80 \\
x_{1} & \geq 0 \\
& x_{2}
\end{aligned}
$$

Feasibility

- An LP is feasible if there exists an assignment of variables that satisfies the constraints
- Nontrivial result: feasibility is not trivial to determine. In the worst case, it is as difficult as solving the entire LP.

Matrix Representation

Objective:
$\left[\begin{array}{ll}3 & 4\end{array}\right]$
Subject to:
$\left[\begin{array}{cc}2 & 1 \\ 0 & 3 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \leq\left[\begin{array}{c}120 \\ 180 \\ 80 \\ 0 \\ 0\end{array}\right]$

- Can represent with a matrix and vector
- Useful!
- I don't plan to use this representation again in this class

Visual representation

- We can plot these inequalities
- Works best for instances with 2 or 3 variables
- We'll use extensively as it gives good intuition

Plotting an LP

Objective:

$$
\max 3 x_{1}+4 x_{2}
$$

Subject to:

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 120 \\
x_{1}+3 x_{2} & \leq 180 \\
x_{1}+x_{2} & \leq 80 \\
x_{1} & \geq 0 \\
& x_{2}
\end{aligned}
$$

Why are we looking at this?

- Many problems can be phrased as a linear program
- Linear programs can be solved efficiently
- For today: take as a given that efficient solving is possible. How can we use linear programming to solve these problems?
- Essentially a reduction: similar to using Network Flow to solve problems

Solving Problems with Linear Programming

Optimization Problems

Example 1: Diet

- You need to eat 46 grams of protein and 130 grams of carbs every day
- 100 g Peanuts: 25.8 g of protein, 16.1 g carbs, $\$ 1.61$
- 100 g Rice: 2.5 g protein, 28.7 g carbs, $\$.79$
- 100 g Chicken: 13.5 g protein, 0 g carbs, $\$.70$

What is the cheapest way you can hit your diet goals?

Diet Problem

How can we phrase this as a linear program?

- Let p be the amount of peanuts, r be the amount of rice, and c be the amount of chicken you buy.
- Then what is our objective function?
- Answer: $1.61 p+.79 r+.7 c$
- Do we want to maximize or minimize this?
- $\min 1.61 p+.79 r+.7 c$

Diet Problem Constraints

$\min 1.61 p+.79 r+.7 c$

- Protein: $25.8 p+2.5 r+13.5 c \geq 46$
- Carbs: $16.1 p+28.7 r \geq 130$
- Anything else? $p \geq 0, r \geq 0, c \geq 0$

Reminder:

- You need to eat 46 grams of protein and 130 grams of carbs every day
- 100 g Peanuts: 25.8 g of protein, 16.1 g carbs, $\$ 1.61$
- 100 g Rice: 2.5 g protein, 28.7 g carbs, $\$.79$
- 100 g Chicken: 13.5 g protein, 0 g carbs, $\$.70$

Diet Problem Constraints

$\min 1.61 p+.79 r+.7 c$

- Protein: $25.8 p+2.5 r+13.5 c \geq 46$
- Carbs: $16.1 p+28.7 r \geq 130$
- Anything else? $p \geq 0, r \geq 0, c \geq 0$

Solution: $p=0, r=2.9216 \ldots, c=2.86636 \ldots$
So we want to buy about 293 g of rice, and 287 g of chicken, for total cost $\$ 4.32$

Diet Problem Constraints

$$
\min 1.61 p+.79 r+.7 c
$$

- Protein:

$$
25.8 p+2.5 r+13.5 c \geq 46
$$

- Carbs: $16.1 p+28.7 r \geq 130$
- Anything else? $p \geq 0$,

$$
r \geq 0, c \geq 0
$$

Solution: $p=0, r=2.9216 \ldots$, $c=2.86636 \ldots$
So we want to buy about 293 g of rice, and 287 g of chicken, for total cost $\$ 4.32$

Example 2: Facility Location

- Given coordinates for n roommates

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

- Goal: find location for a router that minimizes the average distance to each roommate
- Distance from (x, y) to $\left(x_{i}, y_{i}\right)$ is $\left|x-x_{i}\right|+\left|y-y_{i}\right|$
- Cannot have distance more than 10 from any roommate

Example 2: Facility Location

Objective:
Constraints:

$$
\begin{aligned}
& (x-3)+(y-4) \leq 10 \\
& (-x+3)+(y-4) \leq 10 \\
& (-x+3)+(-y+4) \leq 10 \\
& (x-3)+(-y+4) \leq 10 \\
& (x-13)+(y-5) \leq 10 \\
& (-x+13)+(y-5) \text { Can't make }\left(x_{i}, y_{i}\right) \text { is }\left|x-x_{i}\right|+\left|y-y_{i}\right| \\
& (-x+13)+(-y-\text { objective function } \text {-annot have distance }>10 \\
& (x-13)+(-y+5) \text { Idea: add from any roommate } \\
& \text { new variables! }
\end{aligned}
$$

Example 2: Facility Location

Objective: $\min d_{1}+d_{2}$
Constraints:

$$
\begin{aligned}
(x-3)+(y-4) & \leq d_{1} \\
(-x+3)+(y-4) & \leq d_{1} \\
(-x+3)+(-y+4) & \leq d_{1} \\
(x-3)+(-y+4) & \leq d_{1} \\
(x-13)+(y-5) & \leq d_{2} \\
(-x+13)+(y-5) & \leq d_{2} \\
(-x+13)+(-y+5) & \leq d_{2} \\
(x-13)+(-y+5) & \leq d_{2} \\
d_{1} & \leq 10 \\
d_{2} & \leq 10
\end{aligned}
$$

- Given roommates at $(3,4)$ and $(13,5)$
- Goal: find location for a router that minimizes the average distance to each roommate
- Distance from (x, y) to $\left(x_{i}, y_{i}\right)$ is $\left|x-x_{i}\right|+\left|y-y_{i}\right|$
- Cannot have distance >10 from any roommate

Example 2: Facility Location

Objective: $\min d_{1}+d_{2}$
Constraints:

- Given roommates at $(3,4)$ and $(13,5)$
- Goal: find location for a router that minimizes the average distance to each roommate
- Distance from (x, y) to $\left(x_{i}, y_{i}\right)$ is $\left|x-x_{i}\right|+\left|y-y_{i}\right|$
- Cannot have distance >10 from any roommate

Proving Correctness

- How can we show that the above LP works?
- Idea: an LP is feasible if and only if it corresponds to a correct router placement
- 1st: if there exists a feasible LP solution has values d_{1}, d_{2}, x, y then there exists a router placement at (x, y) with distance at most d_{1} and d_{2} from roommates 1 and 2 , with $d_{1} \leq 10$ and $d_{2} \leq 10$
- 2 nd: any placement of a router at location (x, y), with distance $d_{1} \leq 10$ and $d_{2} \leq 10$ from the first and second roommate respectively corresponds to a feasible LP solution with variables d_{1}, d_{2}, x, y
- If we can prove these claims then solving this LP solves the router placement problem: we get the min total distance placement

Proving Correctness

Lemma 1

If there exists a feasible LP solution with variables d_{1}, d_{2}, x, y then a router at (x, y) has distance at most d_{1} and d_{2} from roommates 1 and 2 , with $d_{1} \leq 10$ and $d_{2} \leq 10$

Proof: Router at (x, y) has distance $\hat{d}_{1}=|x-3|+|y-4|$ from roommate 1. Because the LP soln is feasible, we have:

$$
\begin{aligned}
(x-3)+(y-4) \leq d_{1} & (-x+3)+(y-4) \leq d_{1} \\
(-x+3)+(-y+4) \leq d_{1} & (x-3)+(-y+4) \leq d_{1}
\end{aligned}
$$

Since \hat{d}_{1} is equal to the left side of one of these equations, $\hat{d}_{1} \leq d_{1}$. Furthermore, since the LP solution is feasible, $d_{1} \leq 10$, so $\hat{d}_{1} \leq 10$.

Same argument works for roommate 2

Proving Correctness

Lemma 2

Any placement of a router at location (x, y), with distance $d_{1} \leq 10$ and $d_{2} \leq 10$ from the first and second roommate respectively corresponds to a feasible LP solution with variables d_{1}, d_{2}, x, y

Proof summary: We have $d_{1}, d_{2} \leq 10$ by definition. We need to show the roommate constraints are satisfied. Let's focus on d_{1}. We have $d_{1}=|x-3|+|y-4|$.

For any x, y we have:

$$
\begin{array}{ll}
x-3 \leq|x-3| & -x+3 \leq|x-3| \\
y-4 \leq|y-4| & -y+4 \leq|y-4|
\end{array}
$$

Substituting, all equations for d_{1} are satisfied.

Proving Correctness

- Therefore, the best LP solution gives the best router placement!
- So we can solve this problem by solving an LP
- Can we add new roommates? Yes!
- New constraints? Yes-if they're linear

Taking a step back

- Useful: can generalize (weighting, additional constraints, additional dimensions)
- Some intuition: what can you encode with an LP?
- Continuous: cannot explicitly require integer values
- AND not OR: can add new constraints. But, can't just select one to satisfy
- (Example: distance absolute value worked because $d_{1} \geq 3-x$ AND $d_{1}>x-3$. Cannot do something like $d>5$ OR $d<3$.)

Examples of problems that are harder or impossible to generalize to an LP:

- Peanuts come in packs; can only buy an integer number
- Buying two routers for the house. (Each roommate needs to connect to one OR the other)

Taking a step back

Things to note

- Can (and often want to) create new variables when making an LP
- Each instance of the problem may require a new LP
- Example: for a general roommate at $\left(x_{1}, y_{1}\right)$ instead of $(3,4)$: । would have $x+y-d_{1} \leq x_{1}+y_{1}$, rather than $x+y-d_{1} \leq 7$,
- Note that the parameters of the specific instance are constants as far as the LP is concerned (x_{1} and y_{1} are "constants" in the above)
- You may multiply these constants, do precomputations on them-whatever you want so long as you get a final correct LP for the given instance

What can you solve with LP?

- Clasically: optimization problems (resource allocation, network flow like problems)
- Magic wand if your problem is continuous and has linear constraints and objective
- Also odd things like shortest path, even things like sorting

Back to router example

- Let's say we used Euclidean distance with the router. Can we use an LP then?

$$
d\left((x, y),\left(x_{1}, y_{1}\right)\right)=\sqrt{\left.\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}\right)}
$$

- Don't need the square root to minimize...
- But still doesn't seem possible

Example 3 (hard): Group Grading

- The CS TAs at Williams have decided that all TAs will help do the grading for all assignments due in a given week.
- Each assignment is due during one of n hour-long time slots, and there are m courses total.
- Time slot i has t_{i} TAs available for grading
- Grading a single assignment from course j requires a total of h_{j} TA hours worth of time
- $w_{i, j}$ is the number of assignments from course j that arrive at time slot i
- Question: for each time slot i, how many (fractional) TAs should work on each course j to minimize the average time it takes each submission to be graded?

Example 3 (hard): Group Grading

First: it sounds like we should make a variable for the actual assignment we want. Let $x_{i, j}$ be the number of TAs working on course j in time slot i.

- Time slot i has t_{i} TAs available for grading
- Grading a single assignment from course j requires a total of h_{j} TA hours worth of time
- $w_{i, j}$ is the number of assignments from course j that arrive at time slot i
- Question: for each time slot i, how many TAs should work on each course j to minimize the average time it takes each submission to be graded?

Example 3 (hard): Group Grading

Can we constrain $x_{i, j}$?
Yep, $\sum_{j} x_{i, j} \leq t_{i}$

- Time slot i has t_{i} TAs available for grading
- Grading a single assignment from course j requires a total of h_{j} TA hours worth of time
- $w_{i, j}$ is the number of assignments from course j that arrive at time slot i
- Question: for each time slot i, how many TAs should work on each course j to minimize the average time it takes each submission to be graded?

Example 3 (hard): Group Grading

What if we can't finish all the work in a given timeslot? We need to keep track of what spills over. Let $r_{i, j}$ be the remaining work for course j after time slot i.

- Time slot i has t_{i} TAs available for grading
- Grading a single assignment from course j requires a total of h_{j} TA hours worth of time
- $w_{i, j}$ is the number of assignments from course j that arrive at time slot i
- Question: for each time slot i, how many TAs should work on each course j to minimize the average time it takes each submission to be graded?

Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot i for course j, we assign $x_{i, j}$ TAs, so they can grade a total of $x_{i, j} / h_{j}$ assignments.

- Time slot i has t_{i} TAs available for grading
- Grading a single assignment from course j requires a total of h_{j} TA hours worth of time
- $w_{i, j}$ is the number of assignments from course j that arrive at time slot i
- Question: for each time slot i, how many TAs should work on each course j to minimize the average time it takes each submission to be graded?

Example 3 (hard): Group Grading

Time slot i starts with $r_{i-1, j}$ assignments remaining for course j. The TAs can grade $x_{i, j} / h_{j}$ assignments, and $w_{i, j}$ new assignments are turned in. Therefore, $r_{i, j} \geq r_{i-1, j}+w_{i, j}-x_{i, j} / h_{j}$.

- Time slot i has t_{i} TAs available for grading
- Grading a single assignment from course j requires a total of h_{j} TA hours worth of time
- $w_{i, j}$ is the number of assignments from course j that arrive at time slot i
- Question: for each time slot i, how many TAs should work on each course j to minimize the average time it takes each submission to be graded?

Cost?

- We want to minimize the average time it takes each submission to be graded.
- The total time all submissions of course j wait is $\sum_{i} r_{i, j}$
- The total number of submissions is $\sum_{i} \sum_{j} w_{i, j}$
- Need $r_{i, j} \geq 0$!
- Objective function: minimize $\left(\sum_{j} \sum_{i} r_{i, j}\right) /\left(\sum_{i} \sum_{j} w_{i, j}\right)$

Example 3: Final LP

Remember that

Objective: $\min \left(\sum_{j} \sum_{i} r_{i, j}\right) /\left(\sum_{j} \sum_{i} w_{i} h_{j}\right)$ is a constant!
Constraints:
For all $i: \sum_{j} x_{i, j} \leq t_{i}$
For all i and all $j: r_{i, j} \geq r_{i-1, j}+w_{i, j}-x_{i, j} / h_{j}$
For all i and all $j: x_{i, j} \geq 0$ and $r_{i, j} \geq 0$

- What are the variables? What are the constants?
- Is this an LP? What is its size? How many dimensions?
- How can we go from a feasible LP solution to a real-world schedule?

Structure of Linear Programs

Canonical Form

- Without loss of generality, can always put all constants on the right
- All constraints are $=$ without loss of generality
- Use auxiliary variables to achieve \leq or \geq
- $3 x-3 \geq 0$ becomes: $3 x-a_{0}=3$ for some $a_{0} \geq 0$
- $x-3+y-4 \leq d_{1}$ becomes: $x+y-d_{1}+a_{1}=7$ for some $a_{1} \geq 0$
- Necessary for some LP solvers. I believe we won't need this for our solver.

Extreme Points

- Where can a solution lie?
- Can't ever be inside the polytope
- In fact, don't need to look along a line either
- All solns at extreme point
- Defn: does not lie on a line between two other points in the polytope

