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e Make sure to pull for small test files

e Refer to emails about small typos (most important: Problem 4
should be upper bounding that the assumption is INcorrect)



What is an algorithmic problem?

e Constraints

e Objective



Next four lectures

e Frameworks to phrase algorithmic problems

e Allow practical solutions for a wide variety of

otherwise-intractable problems
e “Optimization” problems that come up frequently in practice

e This topic is much older and much much broader than

anything else we've covered

e Focus for this class: using linear programming and integer
linear programming (and their solvers) to obtain optimal
solutions to difficult problems. (Won't be focusing on
structure, mathematical properties.)



€ € | have a strong interest in the question of where math-

ematical ideas come from, and a strong conviction that

they always result from a fairly systematic process—and

that the opposite impression, that some ideas are incred-

ible bolts from the blue that require “genius” or “sudden
inspiration” to find, is an illusion. , ’

Timothy Gowers



e Starts with a legend



George Dantzig

e Father of Linear
Programming

e Worked for military during
World War 2

e Invented the simplex

algorithm




Linear Programming

A linear program consists of:

e a linear objective function, and

e a set of linear constraints.

Goal: achieve the best possible objective function value while
satisfying the constraints



Why linear programming

e Black-box tools to solve important optimization problems that

would be otherwise intractable

e Probably the most powerful tool you'll learn about to solve
difficult algorithmic problems

e More powerful (in a sense) than dynamic programming
e Strictly generalizes network flows
e Essentially gives a free method to solve continuous

optimization problems—as well as some others

e 2004 survey: 85% of fortune 500 companies report using linear

programming



Let's say our variables are xq, ... x,.

A linear function is the sum of a subset of these variables, each

(possibly) multiplied by a constant.

e Linear inequality: this can be set >, <, or = a final constant.

Example: 4x; — 3x, < 7 is linear

Example 2: 4xyx, + x; = 3 is not

Example 3: |/x3 — x7| > 5 is not



Linear Programming

A linear program consists of:

e a linear objective function, (min or max) and

e a set of constraints, which are linear inequalities.

Goal: achieve the best possible objective function value while
satisfying the constraints
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Objective:
max  3xy + 4xo

Subject to:
2+ x <120

x1 +3x <180

x1 + x <80

. >0
xx =0
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Feasibility

e An LP is feasible if there
exists an assignment of
variables that satisfies the
constraints

e Nontrivial result: feasibility
is not trivial to determine.
In the worst case, it is as

: difficult as solving the entire
LP.
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Objective:
Subject to:
[ 2 1
0o 3

0 1
-1 0

0 -1

[3 4]

X1
X2

IN

120 |

180

Matrix Representation

e Can represent with a matrix
and vector

o Usefull

e | don't plan to use this
representation again in this
class
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Visual representation

e We can plot these inequalities
e Works best for instances with 2 or 3 variables

e We'll use extensively as it gives good intuition
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Plotting an LP

Objective:
max 3x1 + 4xo

Subject to:

2x1 + xp <120
x1 +3x <180
x1 + x» <80
X1 >0
X >0
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Why are we looking at this?

Many problems can be phrased as a linear program

Linear programs can be solved efficiently

For today: take as a given that efficient solving is possible.

How can we use linear programming to solve these problems?

Essentially a reduction: similar to using Network Flow to solve

problems
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Solving Problems with Linear
Programming




Optimization Problems

Example 1: Diet

e You need to eat 46 grams of protein and 130 grams of carbs
every day

e 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61
e 100g Rice: 2.5g protein, 28.7g carbs, $.79

e 100g Chicken: 13.5g protein, Og carbs, $.70

What is the cheapest way you can hit your diet goals?
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Diet Problem

How can we phrase this as a linear program?

Let p be the amount of peanuts, r be the amount of rice, and
¢ be the amount of chicken you buy.

Then what is our objective function?

Answer: 1.61p + .79r + .7¢c

e Do we want to maximize or minimize this?

min1.61p 4 .79r 4 .7c¢

18



Diet Problem Constraints

min1.61p 4+ .79r 4 .7¢

e Protein: 25.8p 4+ 2.5r + 13.5¢ > 46
e Carbs: 16.1p +28.7r > 130

e Anything else? p>0,r>0,¢c>0

Reminder:
e You need to eat 46 grams of protein and 130 grams of carbs
every day
e 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61
e 100g Rice: 2.5g protein, 28.7g carbs, $.79
e 100g Chicken: 13.5g protein, Og carbs, $.70
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Diet Problem Constraints

min1.61p 4 .79r 4 .7c

e Protein: 25.8p 4+ 2.5r + 13.5¢ > 46
e Carbs: 16.1p +28.7r > 130

e Anything else? p>0,r>0,¢c>0

Solution: p =10, r = 2.9216..., c = 2.86636...

So we want to buy about 293g of rice, and 287g of chicken, for
total cost $4.32
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Diet Problem Constraints

min1.61p + .79r 4 .7c

e Protein:
25.8p + 2.5r +13.5¢c > 46

e Carbs: 16.1p+28.7r > 130

e Anything else? p > 0,
r>0,¢c>0

é T Solution: p = 0, r = 2.9216...,
~ ¢ =2.86636...

-

So we want to buy about 293g
of rice, and 287g of chicken, for
total cost $4.32
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Example 2: Facility Location

Given coordinates for n roommates

. (x1, 1), (%2, ¥2), -+ s (Xn, ¥n)

e Goal: find location for a router that minimizes the average
distance to each roommate

e Distance from (x,y) to (x;,y;) is |[x — xi| + |y — yil

e Cannot have distance more than 10 from any roommate
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Example 2: Facility Location

Objective:

Constraints: ]
e Given roommates at (3,4)

(x=3)+(r—-4)<10 and (13,5)
(—x+3)+(y—4) <10 e Goal: find location for a
(=x+3)+ (—y +4) <10 router that minimizes the

(x=3)+(-y+4) <10
(x—13)+(y—5) < 10

average distance to each
roommate
e Distance from (x, y) to
=)y EURSLELCINN. Vi) is [x — x| + |y — yil
(—x + 13) + (—y RJEIVER el ]

(x —13) + |dea: add
new variables!

not have distance > 10

(—y m any roommate
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Example 2: Facility Location

Objective: mind; + d>
Constraints:

x=3)+(y—-4)<d e Given roommates at (3,4)
(—x+3)+(y—4) < di and (13,5)
(—x+3)+ (—y +4) < dy e Goal: find location for a
(x—3)+(—y +4) < di router that minimizes the
average distance to each
(x-13)+(y-5) =< roommate
(SERIB)EE(y = 0) < db e Distance from (x, y) to
(Sx+ 13} Sy +5)i= & (xi, i) is [x = xi| + [y — yil
(x=13)+(-y +5) < d e Cannot have distance > 10
d <10 from any roommate
dr <10
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Example 2: Facility Location

Objective: mind; + d>

Constraints: .
e Given roommates at (3,4)

x+y—di <7 and (13,5)
—x+y—d <1 e Goal: find location for a

router that minimizes the
—Xx—y—d <7

x—y—d <-1
x+y—d <18

average distance to each
roommate

e Distance from (x, y) to

—X+y—d < -8 (xi, yi) is |x = xi| + |y — yil
—x—y—d» <18 e Cannot have distance > 10
x—y—d <8 from any roommate
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Proving Correctness

e How can we show that the above LP works?

e |dea: an LP is feasible if and only if it corresponds to a correct
router placement

e 1st: if there exists a feasible LP solution has values dy, db, x, y
then there exists a router placement at (x, y) with distance at
most di and do from roommates 1 and 2, with d; < 10 and
d» <10

e 2nd: any placement of a router at location (x, y), with
distance d; < 10 and d> < 10 from the first and second
roommate respectively corresponds to a feasible LP solution
with variables di, db, x, y

e If we can prove these claims then solving this LP solves the
router placement problem: we get the min total distance

placement
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Proving Correctness

Lemma 1

If there exists a feasible LP solution with variables dy, d», x, y then
a router at (x,y) has distance at most di and d» from roommates
1 and 2, with d; < 10 and d» < 10

Proof: Router at (x, y) has distance di = |x — 3| + |y — 4| from
roommate 1. Because the LP soln is feasible, we have:

(x=3)+(y—-4)<d (x+3)+(y—4)<a
(—x+3)+(~y+4) < d (x=3)+(~y+4)<d

Since d; is equal to the left side of one of these equations, di < di.
Furthermore, since the LP solution is feasible, d; < 10, so d; < 10.

Same argument works for roommate 2 -



Proving Correctness

Lemma 2

Any placement of a router at location (x,y), with distance di < 10
and dy < 10 from the first and second roommate respectively
corresponds to a feasible LP solution with variables di, do, x, y

Proof summary: \We have di, d» < 10 by definition. We need to
show the roommate constraints are satisfied. Let's focus on d;. We
have di = |x — 3| + |y — 4|

For any x, y we have:
x—3<|x—3| —x+3 < |x =3
y—4<|y—4 —y+4<|y—4
Substituting, all equations for d; are satisfied.
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Proving Correctness

e Therefore, the best LP
solution gives the best
router placement!

e So we can solve this
problem by solving an LP

e Can we add new
roommates? Yes!

e New constraints? Yes—if
they're linear
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Taking a step back

e Useful: can generalize (weighting, additional constraints,

additional dimensions)
e Some intuition: what can you encode with an LP?
e Continuous: cannot explicitly require integer values
e AND not OR: can add new constraints. But, can't just select

one to satisfy
e (Example: distance absolute value worked because d; > 3 — x

AND d; > x — 3. Cannot do something like d > 5 OR d < 3.)

Examples of problems that are harder or impossible to generalize to

an LP:

e Peanuts come in packs; can only buy an integer number
e Buying two routers for the house. (Each roommate needs to

connect to one OR the other)
30



Taking a step back

Things to note

Can (and often want to) create new variables when making an
LP

Each instance of the problem may require a new LP

Example: for a general roommate at (xi, y1) instead of (3,4): |
would have x +y — di < x1 + y1, rather than x +y — dy <7,
Note that the parameters of the specific instance are constants
as far as the LP is concerned (x; and y; are “constants” in the
above)

You may multiply these constants, do precomputations on
them—whatever you want so long as you get a final correct
LP for the given instance
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What can you solve with LP?

e Clasically: optimization problems (resource allocation, network

flow like problems)

e Magic wand if your problem is continuous and has linear
constraints and objective

e Also odd things like shortest path, even things like sorting
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Back to router example

Let's say we used Euclidean distance with the router. Can we
use an LP then?

d((x, ), (31, 11)) =/ (x = x1)2 + (v = 1)?)

Don't need the square root to minimize...

But still doesn't seem possible
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Example 3 (hard): Group Grading

e The CS TAs at Williams have decided that all TAs will help do
the grading for all assignments due in a given week.

e Each assignment is due during one of n hour-long time slots,
and there are m courses total.

e Time slot / has t; TAs available for grading

e Grading a single assignment from course j requires a total of
h; TA hours worth of time

e w;; is the number of assignments from course j that arrive at
time slot 7

e Question: for each time slot i, how many (fractional) TAs
should work on each course j to minimize the average time it
takes each submission to be graded?
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Example 3 (hard): Group Grading

First: it sounds like we should make a variable for the actual
assignment we want. Let x;; be the number of TAs working on

course j in time slot /.

e Time slot / has t; TAs available for grading

e Grading a single assignment from course j requires a total of
h; TA hours worth of time

e w;; is the number of assignments from course j that arrive at

time slot /

e Question: for each time slot /, how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Example 3 (hard): Group Grading

Can we constrain x; ;7

Yep, > xij <t

e Time slot / has t; TAs available for grading

e Grading a single assignment from course j requires a total of
h; TA hours worth of time

e w;j is the number of assignments from course j that arrive at
time slot /

e Question: for each time slot /, how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Example 3 (hard): Group Grading

What if we can't finish all the work in a given timeslot? We need to
keep track of what spills over. Let r;; be the remaining work for
course j after time slot /.

e Time slot / has t; TAs available for grading

e Grading a single assignment from course j requires a total of
h; TA hours worth of time

e w;; is the number of assignments from course j that arrive at

time slot /

e Question: for each time slot /, how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot 7 for course j,
we assign x; j TAs, so they can grade a total of x; j/h; assignments.

e Time slot / has t; TAs available for grading

e Grading a single assignment from course j requires a total of
h; TA hours worth of time

e w; is the number of assignments from course j that arrive at
time slot i

e Question: for each time slot /, how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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Example 3 (hard): Group Grading

Time slot / starts with r;_; ; assignments remaining for course j.
The TAs can grade x; j/h; assignments, and w; j new assignments
are turned in. Therefore, r; j > ri_1; + w;j — xi j/hj.

e Time slot / has t; TAs available for grading

e Grading a single assignment from course j requires a total of
h; TA hours worth of time

e w;; is the number of assignments from course j that arrive at
time slot /

e Question: for each time slot i/, how many TAs should work on
each course j to minimize the average time it takes each
submission to be graded?
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e We want to minimize the average time it takes each
submission to be graded.

The total time all submissions of course j wait is >, r; ;

The total number of submissions is >, > w;

e Need r;; > 0!

Objective function: minimize (ZJ Do r;J) / (Zizj W,'J)
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Example 3: Final LP

Remember that

o : \ |
Objective: min (ZJ Do riJ) / (Zj | /i is a constant!
Constraints:

For all i: iji,j <t
For all i and all j: rjj > ri1j+ w;j — xij/h;
Forall jand all j: x;; >0and r;; >0
e What are the variables? What are the constants?

e |s this an LP? What is its size? How many dimensions?

e How can we go from a feasible LP solution to a real-world
schedule?
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Structure of Linear Programs




Canonical Form

e Without loss of generality, can always put all constants on the

right
e All constraints are = without loss of generality

e Use auxiliary variables to achieve < or >
e 3x —3 >0 becomes: 3x — ag = 3 for some a5 > 0
e x—3+y—4<d; becomes: x+y — d; + a3 = 7 for some

8120

e Necessary for some LP solvers. | believe we won't need this for

our solver.
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Extreme Points

e Where can a solution lie?

e Can't ever be inside the
polytope

e In fact, don't need to look
along a line either

e All solns at extreme point

e Defn: does not lie on a line
between two other points in

the polytope
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