
Lecture 13: SIMD Instructions and Code

Review

Sam McCauley

October 25, 2021

Williams College

Admin

• Assignment 5 due Wednesday

• Mini-midterm 2 next week; experimental focus

1

Plan for today

• Go over some of the “implementation” Minhash slides again

• Hopefully you started already!

• But may help reinforce some things you’ve only seen quickly,

or may help you get a piece of it working more effectively.

• SIMD instructions with examples

• Assignment 3 code review

2

MinHash

• The hash consists of an permutation of all possible items in

the universe

128 in the

assignment

• To hash a set A: find the first item of A in the order given by

the permutation. That item is the hash value!

• Concatenate k hashes to lower collision probability. If far

points have similarity j2, best when k ≈ log1/j2 n.

• Repeat until finding the close pair (requires O(R) hashes in

expectation)

3

Practical MinHash Considerations

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of

random number generation

• And most of this won’t ever be used! Most of the time, when

we hash, we don’t make it more than a few indices into the

permutation.

• Idea: Instead of taking just the first hash item that appears in

the permutation, take the first (say) 3. Concatenate them

together. Then we just need k/3 permutations per hash table

to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange},
and we’re looking at a permutation P = {purple, red, white,

orange, yellow, blue, green, black}.
• Then A hashes to redorangeblue

4

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just

taking the first one, we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no

longer independent!

• But this works fine in practice (and is used all the time)

5

Problems with Expectation

• We chose parameters so that buckets are small in expectation

(i.e. on average)

• But: time to process a bucket is quadratic.

• So getting unlucky is super costly!

• What can we do if we happen to get a big bucket?

6

Handling Big Buckets

• One option: recurse!

• Take all items in any really

large bucket, rehash them

into subbuckets

• Might need to repeat

• This option can shave off

small but significant

running time

• (Not required; just one

optimization suggestion.)

7

What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the element we’re

hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each
index, and check to see if that bit is set (say by calculating x

& (1 << index) —but remember that these are 128 bits)

• Method to help with this was given in the starter code.

8

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

9

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Lots of buckets and lots of repetitions have bad

constants.

• Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller

values.

10

Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found

(no maximum number of repetitions)

• The discussion of repetitions in the lecture is for two reasons:

1. analysis, 2. give intuition for the tradeoff by varying k

11

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to

figure out what hashes where so that we can compare

elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to

n − 1. We’re instead concatenating indices

• How to keep track of buckets?

12

How to Deal with Buckets?

• How to keep track of buckets?

• This is a dictionary problem, where the “key” is the hash value

of the bucket, and the “value” is the bucket itself. Can use

your favorite dictionary solution to solve. (Bear in mind there

are Θ(n) buckets.)

• Can use murmurhash to convert a hash string value to a

number; this means that you can keep the buckets in an array

and index into them directly. (This will result in some buckets

being combined, which hurts efficiency—but probably not too

much.)

• Can also do it in-place using sorting—don’t need to store

explicit buckets

13

Storing a Hash

• Just need a permutation on {0,. . . , 127}

• How can we store that?

• First key observation: we (basically) never make it through

the whole permutation (we’ll always see at least one 1 first)

• Taking that a bit further: we only really need the first few

indices. If we’re using k̂ indices from one ordering, something

like 8k̂ or 16k̂ will almost certainly suffice.

• What about elements that hash further? Answer: just give

them the value of the last index in the ordering.

14

Truncating Hash Example

• Let’s say our permutation is

{47, 11, 85, 64, 13, 74, 70, 107, 112, 103, 7, 95, 3, . . .} and

k̂ = 2.

• I only store {47, 11, 85, 64, 13, 74, 107, 112}. If we go past 112

for some x , and we have not seen k̂ indices that are a 1 in x , I

just write 112 until I get k̂ numbers.

15

Takeaway from Truncating Hashes

• This means we can store fewer bits, fewer random numbers

• Is this important for us? It may be nice (array is smaller) but

probably doesn’t change much

• But, is very important if number of dimensions is very high

(i.e. Netflix movies watched)

• I want to be clear: don’t spend time implementing this in your

code. Just something to be aware of. (And I ask you to

analyze one specific case of this in Problem 4.)

16

Back to SIMD

SIMD on lab computers

(gdb) print $ymm0
$1 = {

v8_float={0,0,0,0,0,0,0,0},

v4_double={0,0,0,0},

v32_int8={0 <repeats 32

times>},

v16_int16={0 <repeats 16

times>},

v8_int32={0,0,0,0,0,0,0,0},

v4_int64={0,0,0,0},

v2_int128={0,0}

}

• We have SSE, AVX, AVX2

instruction sets (don’t have

AVX-512)

• 16 “YMM” registers; each

256 bits

• (Older processors may only

have 128 bit “XMM”

registers.)

• Need to include #include

<immintrin.h> and

compile with -mavx2

17

SIMD Examples

What is SIMD good for?

• Lots of identical operations on a set of elements; these

operations are costly

• Elements are in nicely-sized chunks

• Can always used specialized code to handle other cases

18

Example 1: Adding two arrays

• Let’s add two arrays of 8 32-bit integers with one SIMD

operation

• simdtests.c

19

Assembly examples

20

How AVX2 instructions work

• Need to invoke operation

• Also need to state the type of underlying data. Even if you
have 256-bit SIMD items, you need to specify:

• Are you adding 4 64-bit longs?

• Or 8 32-bit floats?

• Or 32 8-bit unsigned integers?

• Each of these involves a different function

• Ex: mm256 add epi32(first, second); vs

mm256 add pd(first,second)

21

Example 2: Adding single value to array

• Let’s add one value (10) to an array.

• Do we need to declare a new array to do this? Or can we

make a vector of 10s manually?

22

Speed comparison

• How much time does SIMD add (in total in our

implementation) take compared to normal add?

• It’s a bit faster

23

Example 3: Searching for Particular Value in Array

• Can do vector comparisons, but get a 256 bit vector out

• Need a way to make that vector into something useful for us.

Let’s look at the code.

• int mm256 movemask epi8(mm256 arg): returns a 32 bit

int where the ith bit of the int is the first bit in the ith byte

of the argument arg

24

Optimization comparison?

• What happens when we change to O3?

• Everything gets faster!

• In previous tests: for adding, normally suddenly outpaces

SIMD; finding the 0 element doesn’t

• Guesses as to why? ...Let’s take a look at the assembly

• gcc is vectorizing the operations by itself and doing it very

slightly better

25

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

• SIMD instructions may be a little slower on a per-operation

basis (folklore is a factor of ≈ 2 even for the operation itself

(i.e. a SIMD add may take 2 times as long as a 64-bit add),

but it seems modern implementations are much better)

• Cost to gather items into SIMD register

• SIMD is not always faster

How much can we save using SIMD? Let’s say we’re using 256 bit

registers, and operating on 32 bit data.

• Factor of 256/32 = 8 at absolute best

• Realistically is going to be quite a bit lower in practice

26

Tradeoffs

• Bear in mind Amdahl’s law when considering SIMD

• Only worth using on the most costly operations, and only

when they work very well with SIMD

27

One Question

• What’s a problem we’ve seen this semester that is particularly
suited for SIMD speedup?

• Hint: I’m not referring to any of the assignment problems

• Matrix multiplication: lots of time doing multiplications on

successive matrix elements

• (SIMD works for some other problems too; I just wanted to

highlight this as one of the classic examples.)

28

Compiler?

• A lot of the examples we saw were super simple

• Can the compiler use these operations automatically?

• As we just saw: yes it can

• --ftree-vectorize

• --ftree-loop-vectorize (turned on with O3)

• Lots of extra option to tune gcc parameters for how it

vectorizes

• But, as always, only is going to work in “obvious” situations.

29

Automatic Vectorization Example

We can see the paddd SIMD in-

struction (on xmm1 and xmm0)

when compiling with -O3.

30

Assignment 3 Discussion

Assignment 3

• Looked good!

• Most common mistake: need to check both bins if it’s empty

when inserting before entering cuckoo loop.

• Perhaps biggest code challenge: extracting specific fingerprint

from bin

31

Using loop for mask

uint32_t bin;

uint32_t fingerprint;

//bin stores the whole bin we’re looking at

//fingerprint stores the fingerprint we’re looking for

for(int slot = 0; slot < numSlots; slot++) {

if((bin >> slot) & 255 == fingerprint) {

return 1;

}

}

255 masks out all but the last 8 bits of the bin (sets the rest to 0).

This method works fine, but gets annoying for inserts.

• Need to first set slot to 0, then store fingerprint in correct slot

32

Using array for mask

This allows us to use something like

//store fingerprint in bin

bin = (bin & bitmask[slot]) + (fingerprint << slot);

33

Using 8-bit pointers

• Advantage: don’t need to deal with masks at all!

• Disadvantage: do need to deal with potential pointer issues.

(Not casting the pointer type correctly will lead to odd, subtle

bugs.)

34

Separating out into functions

• No optimization criteria for Assignment 3

• So: cleanest solution is best solution. (Best for me/to

maintain. But also, easiest for you to debug.)

• This is always true. But it is true that sometimes to write fast

code, you should take clean code and make it less clean (e.g.

by manually inlining functions)

• Let’s look at one good example of a very very clean

Assignment 3

35

Get and set in bin

36

Bin Insert

37

Cuckoo

38

One takeaway

• Writing more modular code is often the best way to make

your code easier to work with

• Superior to comments; can even be superior to simplifying

expressions with intermediate variables.

39

One note on coding style

• Classic computer science problem (especially in C): how to

gracefully exit a loop

• More difficult when you want to exit two loops (because

break doesn’t work).

• There are several ways to do this, and people have strong
opinions about the benefits of each.

• I don’t think there’s one right way to do things...

• But I do think there are some specific suboptimal things to

watch out for

40

Nested loop

void cuckoo() {

for(int iteration = 0; iteration < maxIter;

iteration++){

for(int slot = 0; slot < 4; slot++) {

if(bin[slot] == 0) {

/* what do we want to do here? */

}

}

}

/*cuckoo failed if never hit the above*/

}

• Many of you had code that looks like this
• When find fingerprint, want to:

• Update bin with new fingerprint

• Get out of the whole function 41

Nested loop: 1st solution

void cuckoo() {

for(int iteration = 0; iteration < maxIter;

iteration++){

for(int slot = 0; slot < 4; slot++) {

if(bin[slot] == 0) {

bin[slot] = fingerprint;

return;

}

}

}

printf("failed!")

}

• In my opinion the best solution by far

• Only downside: multiple return points for function
42

Nested loop: 2nd solution (avoid return)

void cuckoo() {

int flag = 1;

for(int iteration = 0; iteration < maxIter && flag;

iteration++){

for(int slot = 0; slot < 4 && flag; slot++) {

if(bin[slot] == 0) {

bin[slot] = fingerprint;

flag = 1;

}

}

}

if(!flag)

printf("failed!")

}

• Also OK (IMO inferior, but not problematic) 43

Nested loop: 3rd solution (too much IMO)

void cuckoo() {
int flag = 1;

for (int iteration = 0; iteration < maxIter; iteration ++){
for (int slot = 0; slot < 4; slot ++) {

if (bin [slot] == 0) { flag = 1; break;

}
}
if (flag) break;

}
if (flag)

printf (” failed !”)

else

bin [slot] = fingerprint ;

}

• Messy; extra ifs; unclear when last line runs. (not ideal)

44

Point to bring home

• Sometimes getting out of a loop requires messy control flow

• May require things you usually want to avoid: break, flag

variables, early returns, even goto

• Rule of thumb: use what’s simplest; do the least possible

• Multiple exit points:

• Definitely don’t want to have unnecessary exit points

• In my opinion, not worth writing more complex code to avoid

multiple exit points (though I won’t penalize for that alone)

• More important: not worth doing extra work to avoid multiple

exit points; execute code immediately when you know you can

45

	Practical MinHash Considerations
	Back to SIMD
	SIMD Examples
	SIMD Discussion
	Assignment 3 Discussion

