Lecture 12: Locality-Sensitive Hashing and MinHash

Sam McCauley

October 21, 2021

Williams College

Admin

- Mini-Midterm 1 handed back
- Assignment 5 out this afternoon
- Leaderboard is back this week
- Mini-Midterm 2 next week

SIMD Cliffhanger

- We ended right before starting SIMD last time!
- Need to focus on Assignment 5 today
- If we don't get to SIMD we'll do it on Monday
- There is one SIMD part of the assignment (but you can do the rest without SIMD)

Mini-Midterm 1 review

Comments on Mini-Midterm 1

- Lots of good solutions; questions generally went well
- Biggest difference between solutions: how to store buckets?
- Let's look at a few options. We'll be using hash buckets (and doing compare-all-pairs within each bucket) on Assignment 5 too.

Storing Buckets: arrays

1. Store array of size n

- Easy, effective
- Space increases by \# buckets. Could run out of memory on large input with high SHIFT.

2. Dynamic arrays: if bucket fills up, double size

- Can use realloc
- Insert-only, so can just double every time size is a power of two
- Effective; space-efficient. But requires extra work to implement

3. Count bucket sizes beforehand; allocate array of correct size

- Pretty easy and effective. Does require some extra coding (and an extra scan through the data)

Storing Buckets: Other Methods

- Linked List?
- Easy (?) (need to make a struct for the node, but straightforward after that modulo some pointer issues)
- Not cache-efficient to traverse!
- One option: before calling Naive 3SUM on a bucket, first transfer list to an array
- This means Naive 3SUM on buckets of size X costs $O(X)$ extra cache misses
- But after that it's cache-efficient
- ...but does that matter if $3 X<M$?

Storing Buckets: Other Methods

- Sorting!
- Sort elements by their hash value. If two elements have the same hash value, compare by their actual value
- After one call to sort: buckets are all sorted and stored contiguously in memory
- Very very easy! And can store in-place
- Downsides:
- need to store hashes of each element (or recalculate every comparison).
- Have to be careful when comparing

Any other mini-midterm 1 questions?

How the semester is going

- Really well on my end.
- These are hard topics
- but I'm seeing consistently good understanding in the class
- Hopefully hitting a good balance between a challenge and causing stress
- Especially important during a Covid semester

Grades so far

- Median assignment grade: 94
- Median mini-midterm 1 grade: 94.5
- Seems reasonable to me
- Grading is a bit tricky on take-home programming assignments
- Only real way to get points off is to not notice a problem, or to run out of time
- Challenging assignments can wind up being a matter of how much time each student spends rather than how much each gets correct. (Hopefully not too much!)
- May smooth out a bit in Part 3 of class, which doesn't have any C programming

Finding Similar Items

Back to Normal Inputs

- Today: no more streaming! Have all data available to us.
- But data is still big!
- In particular: high-dimensional
- Table with many columns
- For each netflix user, what movies have they seen
- Goal: solve a difficult, but important, problem

Finding Similar Pair

- Given a set of objects
- Find the most similar pair of objects in the set

Why Find Similar Objects?

- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to
- Machine learning in general (training, evaluation, actual algorithms, etc.)
- Data deduplication, etc.
- "Give me a similar pair in this dataset" is a common query!

Strategies for Similarity Search

First attempt: 1-dimensional data

92
44
7
65
60
23
80
67

- Given a list of numbers
- "Similarity" is the difference between them
- How can we find the closest numbers (i.e. ones with smallest difference)?

First attempt: 1-dimensional data

Aside: can we do better? Yes, there's a an we do clever $O(n)$ algorithm based on sampling.

60
65
67
80
92

- Step 2: Scan through list, find most similar adjacent elements.
- $O(n \log n)$ time

Two-dimensional Data?

What About Higher Dimensions?

- We want VERY high dimensions (millions)
- Songs listened to, movies watched, image tags, etc.
- Words that appear in a book, k-grams that appear in a DNA sequence
- Classic options: quad trees, kd trees

How Efficient are High-dimensional Algorithms?

- $O(n \log n)$ for constant dimensions
- But: exponential in dimension!
- Worse than trying all pairs if $>\log n$ dimensions

Curse of Dimensionality

- Many problems have running time exponential in the dimension of the objects.
- Well-known phenomenon
- Applies to similarity search, machine learning, combinatorics
- Approximate techniques, like those we learn about today, are underused to a slightly shocking extent-even in ML people sometimes keep dimensionality low to avoid this issue, affecting the quality of results

Avoiding the Curse of Dimensionality

- Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).
- Two tools to get us there:

We'll come back
to this later

- Assume that the close pair is much closer than any other (approximate closest pair)
- Use hashing! ...A special kind of hashing
- For many of these problems, random inputs are worst-case inputs
- Worst case behavior actually occurs for many common use cases; guarantees (even approximate) can be very valuable

Locality-Sensitive Hashing

Locality-Sensitive Hashing

- Normally, hashing spreads out elements.
- This is key to hashing: no matter how clustered my data begins, I wind up with a nicely-distributed hash table
- Locality-sensitive hashing tries to hash similar items together

Locality-Sensitive Hashing: Formal Definition

- Needs a similarity threshold r, an approximation factor $c<1$
- Two guarantees:
- If two items x and y have similarity $\geq r, h(x)=h(y)$ with probability at least p_{1}.
- If two items x and y have similarity $\leq c r, h(x)=h(y)$ with probability at most p_{2}.
- High level: close items are likely to collide. Far items are unlikely to collide.
- Generally want p_{2} to be about $1 / n$; then we get a normal hash table for far (i.e. distance $\geq c r$) elements.

Why Locality-Sensitive Hashing Helps

	$(101,37,65)$	$(103,37,64)$	$(91,84,3)$	
0	1	$(100,18,79)$		
0				

Ideally, close items hash to the same bucket.

Issue: Low probability of success!

We'll put numbers on this later

- If we have $p_{2}=1 / n$, then p_{1} is usually very small.
- How can we increase this probability?
- Repetitions! Maintain many hash tables, each with a different locality-sensitive hash function, and try all of them.

LSH with Repetitions

$(101,37,65)$	$(103,37,64)$	$(91,84,3)$	$(100,18,79)$	
1				
1				

	$(101,37,65)$ $(103,37,64)$	$(91,84,3)$		$(100,18,79)$					
1						2		3	4

$(101,37,65)$		$(103,37,64)$		$(91,84,3)$ $(100,18,79)$
0	1	2	3	4

Similarity

What Do We Mean by "Similar"?

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
- Songs listened to by a user
- Movies watched by a user
- Human-generated tags given to an image
- Words that appear in a document
- Need a way to measure set similarity

Set Similarity

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e. : lots of artists in common, compared to total artists in either list

Set Similarity

Not very similar!

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e. : lots of artists in common, compared to total artists in either list

Set Similarity

Moderately similar

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e. : lots of artists in common, compared to total artists in either list

Jaccard Similarity

Jaccard Similarity

- Similarity measure for sets A and B
- Defined as:

$$
\frac{|A \cap B|}{|A \cup B|}
$$

- Intuitively: what fraction of these sets overlaps?

Jaccard Similarity Intuition 1

IoU: 0.4034

Poor

IoU: 0.7330

Good

IoU: 0.9264

Excellent

Jaccard Similarity Intuition 2

Area of Overlap
 $\mathrm{loU}=$
 Area of Union

Image Search Example

Jaccard Example 1

Set Similarity

Not very similar!

User 1	User 2	- Similarity: $\|A \cap B\| /\|A \cup B\|$. - $\|A \cap B\|=1$ - $\|A \cup B\|=5$ - Jaccard Similarity: $1 / 5=.2$
Post Malone	Ariana Grande	
Ariana Grande		
Khalid		
Drake		
Travis Scott		

Set Similarity

Moderately similar

User 1	User 2	- Similarity: $\|A \cap B\| /\|A \cup B\|$ - $\|A \cap B\|=3$
Post Malone	Ariana Grande	
Ariana Grande	Ed Sheerhan	
Khalid	Drake	- $\|A \cup B\|=7$
Drake	Travis Scott	- Jaccard Similarity:
Travis Scott	Taylor Swift	$3 / 7=0.428$

Jaccard Similarity: Properties

- Works on sets (each dimension is binary-an item is in the set, or not in the set)
- Always gives a number between 0 and 1
- 1 means identical, 0 means no items in common
- Jaccard similarity ignores items not in either set. So we learn nothing if neither of us like an artist. (Is this good?)
- Still works if one list is much longer than the other. (Generally, they'll have small similarity)

Locality-Sensitive Hash for Jaccard Similarity

- Want: items with high Jaccard Similarity are likely to hash together
- Items with low Jaccard Similarity are UNlikely to hash together
- Classic method: MinHash

MinHash

MinHash

- Developed by Andrei Broder in 1997 while working at AltaVista
- (AltaVista was probably the most popular search engine before Google, they wanted to detect similar web pages to eliminate them from search results)
- Now used for similarity search, database joins, clustering-LOTS of things.

AltaVista

Bit Vectors

- Can represent any set as a vector of bits
- Each bit is an item. " 1 " means that that item is in the set, "0" means it's not
- So if I'm keeping track of different people's favorite colors, my universe may be $\{r e d$, yellow, blue, green, purple, orange $\}$
- If someone likes red and blue, we can store that information as 101000 .
- Effective if universe is smallish; use a list for larger universe

Bit Vectors: Jaccard Similarity

- How can we determine $A \cap B$?
- This is exactly A \& B in C-style notation
- What about $A \cup B$?
- This is exactly $\mathrm{A} \mid \mathrm{B}$ in C-style notation
- We want the size of these sets-need to count the number of 1 s in $\mathrm{A} \& \mathrm{~B}$, or $\mathrm{A} \mid \mathrm{B}$.

MinHash

128 in the assignment

- The hash consists of an-permutation of all possible items in the universe
- To hash a set A : find the first item of A in the order given by the permutation. That item is the hash value!

MinHash example

- Let's stick with favorite colors, out of \{red, yellow, blue, green, purple, orange\}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow)
- First set is 101000 (same as \{red, blue\}). blue is in the set, so the hash value is blue.
- Second set is 110010 (we could also write \{red, yellow, purple\}). blue is not in the set; nor is orange; nor is green. purple is, so purple is the hash value

MinHash for Bit Vectors

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of $\{0,1,2, \ldots, 127\}$
- To hash an item x, go through the rancFor the sakeation. Find the first index i in the list such that thof space let's is 1 .
do do 8 bits (1, 5, 2, 0, 7, 6, 4, 3).
- Then the hash of x is 5 .

MinHash

- A single MinHash: hashes each set to one of its elements (i.e. the position of one of its one bits)
- Not useful yet-output is too small

Analysis of Basic MinHash

Analysis

- What is the probability that $h(A)=h(B)$?
- Let's look at the permutation that defines h. We can ignore any item that is not in A or B.
- Look at the first index in the permutation that is in A or B (i.e. it is in $A \cup B$)
- If this index is in both A and B, then $h(A)=h(B)$
- If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index in $A \cup B$ is equally likely to be first. If the index is in $A \cap B$, they hash together; otherwise they do not
- Therefore: probability of hashing together is $|A \cap B| /|A \cup B|$.

MinHash as an LSH

- This means MinHash is an LSH!
- If two items have similarity at least r, they collide with probability at least r
- If two items have similarity at most $c r$, they collide with probability at most cr

Analysis: Phrased as bit vectors

- What is the probability that $h(A)=h(B)$?
- Let's look at the permutation that defines h. We can ignore any index that is 0 in both A and B.
- Look at the first index in the permutation that is 1 in A or B
- If this index is in both A and B, then $h(A)=h(B)$
- If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index that is 1 in $A \mid B$ is equally likely to be first. If the index is in $A \& B$, they hash together; otherwise they do not
- Therefore: probability of hashing together is (number of 1 s in $A \& B) /($ number of 1 s in $A \mid B$).

Analysis Example

- Let's say we have $A=\{$ red, blue, green $\}$ and $B=\{$ red, orange, purple, green $\}$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together
- If blue or orange or purple appear before red and green, then they don't hash together
- Probability that red or green is first out of $\{$ red, blue, green, orange, purple $\}$ is $2 / 5$.
- Therefore, A and B hash together with probability $2 / 5$.

Making Sure We Find the Close Pair

- To find the close pair, compare all pairs of items that hash to the same value
- (We'll talk about how to do this later-it's similar to MiniMidterm 1)
- Let's say our close pair has similarity .5. How many times do we need to repeat?
- Each repetition has the close pair in the same bucket with probability .5. So need 2 repetitions in expectation.

An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in expectation it takes $1 / p$ iterations of the process before success.

Examples:

- It takes two coin flips in expectation before we see a heads
- We need to roll a 6 -sided die 6 times before we see (say) a three.

Proof:

$$
\sum_{i=1}^{\infty} i p(1-p)^{i-1}=\frac{p}{(1-(1-p))^{2}}=\frac{1}{p}
$$

Concatenations and Repetitions

Problems with this Approach

- Buckets are really big!! (After all, lots of items are pretty likely to have a given bit set.)
- How can we decrease the probability that items hash together?
- Answer: concatenate multiple hashes together.

Concatenating Hashes

- Rather than one hash h, concatenate k independent hashes $h_{1}, h_{2}, \ldots h_{k}$, each with its own permutation $P_{1}, P_{2}, \ldots P_{k}$.
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B ?
- For each of the k independent hashes, A and B collide with probability $|A \cap B| /|A \cup B|$.
- We only obtain the same concatenated hashes if all of the hashes are the same.
- They are independent, so we can multiply to obtain probability $(|A \cap B| /|A \cup B|)^{k}$ of A and B colliding.

Concatenation Example

- Let's say we have $A=\{$ red, blue $\}$ and $B=\{$ red, orange $\}$, and $k=3$.
- $P_{1}=\{$ red, green, blue, orange $\}, P_{2}=\{$ orange, green, blue, red $\}, P_{3}=\{$ red, green, blue, orange $\}$
- Let's hash A.
- First hash: red is in A.
- Second hash: orange not in A, nor is green. Blue is in A.
- Third hash: red is in A.
- Concatenating, we have $h(A)=$ redbluered

Concatenation Example

- Let's say we have $A=\{$ red, blue $\}$ and $B=\{$ red, orange $\}$, and $k=3$.
- $P_{1}=\{$ red, green, blue, orange $\}, P_{2}=\{$ orange, green, blue, red $\}, P_{3}=\{$ red, green, blue, orange $\}$
- Let's hash B.
- First hash: red is in B.
- Second hash: orange is in B.
- Third hash: red is in B.
- Concatenating, we have $h(B)=$ redorangered

Putting it all Together

- For each hash table, we concatenate k hashes.
- Hash all items into buckets. Check every pair of items in each bucket and see if it's the closest
- Quite often we'll get unlucky and the close pair won't be in the same bucket. What can we do?
- Need to repeat all of that multiple times until we find the close pair (let's say we repeat R times)
- So: overall need $k R$ permutations
- What kind of values work for k and R ?

Putting it Together: Analysis

- Let's say we have a set of n items x_{1}, \ldots, x_{n}
- The close pair of items has Jaccard similarity $3 / 4$
- Every other pair of items has similarity $1 / 3$
- How should we set k ? How many repetitions R is it likely to take?

Putting it Together: Analysis (Finding k)

- Non-similar pairs have similarity $1 / 3$
- We want buckets to be small (have $O(1)$ size)
- Look at an element x_{i}. What is the expected size of its bucket?
- $\sum_{j \neq i}(1 / 3)^{k}$ (since x_{i} and any x_{j} with $j \neq i$ share a hash value with probability $1 / 3^{k}$)
- We can then solve $(n-1)(1 / 3)^{k}=1$ to get $k=\log _{3}(n-1)$.

Putting it Together: Analysis (Predicting R)

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^{k}$
- We have $k=\left(\log _{3} n-1\right)$. So....we need to do some algebra.
(Let's assume that k is already an integer)
- $(.75)^{\log _{3}(n-1)}=2^{\log _{2}(n-1) \log _{2}(3 / 4) / \log (3)}=$ $(n-1)^{\log (3 / 4) / \log (3)} \approx 1 / n^{26}$
- So we expect about $R=n^{26}$ repetitions. That's a lot!
- But it's essentially the best we know how to do.

Finding R and k in general

Let's say we have n points where the close pairs have similarity j_{1}, and all other pairs have similarity at most j_{2}

- First, set k so that each bucket has size $O(1): k=\log _{1 / j_{2}} n$.
- Doable at home: show that this is the optimal value for k.
- Then, number of R we need in expectation is:

$$
\left(\frac{1}{j_{1}}\right)^{k}=\left(\frac{1}{j_{1}}\right)^{\log _{1 / j_{2} 2} n}=n^{\log _{\left(1 / j_{2}\right)}\left(1 / j_{1}\right)}
$$

Practical MinHash Considerations

So many Permutations!

- OK, so $k R$ repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't make it more than a few indices into the permutation.
- Idea: Instead of taking just the first hash item that appears in the permutation, take the first (say) 3. Concatenate them together. Then we just need $k / 3$ permutations per hash table to get similar bounds.
- So let's say we have $A=\{$ black, red, green, blue, orange $\}$, and we're looking at a permutation $P=\{$ purple, red, white, orange, yellow, blue, green, black\}.
- Then A hashes to redorangeblue

Reducing Permutations

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need $k R / \hat{k}$ total permutations.
- Does this affect the analysis?
- Yes; the k we're concatenating for each hash table are no longer independent!
- But this works fine in practice (and is used all the time)

Problems with Expectation

- We chose parameters so that buckets are small in expectation (i.e. on average)
- But: time to process a bucket is quadratic.
- So getting unlucky is super costly!
- What can we do if we happen to get a big bucket?

Handling Big Buckets

- One option: recurse!
- Take all items in any really large bucket, rehash them into subbuckets
- Might need to repeat
- This option can shave off small but significant running time
- (Not required; just one optimization suggestion.)

Assignment Parameters

- 128 bit integers (stored as two unsigned 64 bit ints "Item")
- Universe: $\{0, \ldots, 127\}$. (You can pretend that these are images, each of which is labelled with a subset of 128 possible tags.)
- Each bit is a 0 or 1 at random
- (Not realistic case, but hard case!)

What About Hashing?

- MinHash: go through each index in the permutation
- See if the corresponding bit is a 1 in the element we're hashing.
- How can we do this?
- Most efficient way I know is not clever. Just go through each index, and check to see if that bit is set (say by calculating x \& (1 << index) -but remember that these are 128 bits)

Concatenating Indices

- Each time you hash you'll get k indices
- Each is a number from 0 to 127
- How can these get concatenated together?
- Option 1: convert to strings, call strcat
- Note: need to make sure to convert to three-digit strings! Otherwise hashing to 12 and then 1 will look the same as hashing to 1 and then 21 . (012 and 001 instead)
- Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a sequence of $k 8$-bit chunks.

Getting a Good k

- In theory we want buckets of size 1 .
- In practice, we want slightly bigger.
- Why? Lots of buckets and lots of repetitions have bad constants.
- Smaller k means fewer buckets, fewer repetitions (but bigger buckets and more comparisons)
- Start with $k \approx \log _{3} n$, but experiment with slightly smaller values.

Repetitions?

- You're guaranteed that there exists a close pair in the dataset
- My implementation just keeps repeating until the pair is found (no maximum number of repetitions)
- The discussion of repetitions in the lecture is for two reasons: 1. analysis, 2. give intuition for the tradeoff by varying k

How to Deal with Buckets?

- Each time we hash, (i.e. build a new "hash table") need to figure out what hashes where so that we can compare elements with the same hash
- Unfortunately, we're not hashing to a number from (say) 0 to $n-1$. We're instead concatenating indices
- How to keep track of buckets?
- Similar to mini-midterm 1: may want to create buckets. Can also do it in-place using sorting.

Storing a Hash

- Just need a permutation on $\{0, \ldots, 127\}$
- How can we store that?
- First key observation: we (basically) never make it through the whole permutation (we'll always see at least one 1 first)
- Taking that a bit further: we only really need the first few indices. If we're using \hat{k} indices from one ordering, something like $8 \hat{k}$ or $16 \hat{k}$ will almost certainly suffice.
- What about elements that hash further? Answer: just give them the value of the last index in the ordering.

Truncating Hash Example

- Let's say our permutation is $\{47,11,85,64,13,74,70,107,112,103,7,95,3, \ldots\}$ and $\hat{k}=2$.
- I only store $\{47,11,85,64,13,74,107,112\}$. If we go past 112 for some x, and we have not seen \hat{k} indices that are a 1 in x, I just write 112 until I get \hat{k} numbers.

Takeaway from Truncating Hashes

- This means we can store fewer bits, fewer random numbers
- Might be easier to handle. (Arrays of size 16-20 are nicer than arrays of size 128.)

Back to SIMD

SIMD on lab computers

```
(gdb) print $ymm0
$1 = {
    v8_float={0,0,0,0,0,0,0,0},
    v4_double={0,0,0,0},
    v32_int8={0 <repeats 32
        times>},
    v16_int16={0 <repeats 16
        times>},
    v8_int32={0,0,0,0,0,0,0,0},
    v4_int64={0,0,0,0},
    v2_int128={0,0}
}
```

- We have SSE, AVX, AVX2 instruction sets (don't have AVX-512)
- 16 "YMM" registers; each 256 bits
- (Older processors may only have 128 bit "XMM" registers.)
- Need to include \#include <immintrin.h> and compile with -mavx2

SIMD Examples

What is SIMD good for?

- Lots of identical operations on a set of elements; these operations are costly
- Elements are in nicely-sized chunks
- Can always used specialized code to handle other cases

Example 1: Adding two arrays

- Let's add two arrays of 8 32-bit integers with one SIMD operation
- simdtests.c

Assembly examples

```
.LBE24:
# simdtests.c:23: __m256i b = _mm256_set_epi32(B[7], B[6], B[5], B[4], B[3], B[2], B[1], B[0]);
        .loc 1 }231
    vmovdqa %ymm0, 160(%rsp)
    vmovdqa 128(%rsp), %ymm0
    vmovdqa %ymm0, 256(%rsp)
    vmovdqa 160(%rsp), %ymm0
    vmovdqa %ymm0, 288(%rsp)
        # D.25654, b
    # a, tmp178
    # tmp178, __A
    # b, tmp179
    # tmp179, _B
```

. loc 312133
vpaddd \%ymm0, \%ymm1, \%ymm0 \# _76, _75, _77 LIBE27:

Example 2: Adding single value to array

- Let's add one value (10) to an array.
- Do we need to declare a new array to do this? Or can we make a vector of 10 s manually?

Speed comparison

- How much time does SIMD add (in total in our implementation) take compared to normal add?
- It's a bit faster

Example 3: Searching for Particular Value in Array

- Can do vector comparisons, but get a 256 bit vector out
- Need a way to make that vector into something useful for us. Let's look at the code.
- int _mm256_movemask_epi8(_mm256 arg): returns a 32 bit int where the i th bit of the int is the first bit in the i th byte of the argument arg

Optimization comparison?

- What happens when we change to O3?
- Everything gets faster!
- In previous tests: for adding, normally suddenly outpaces SIMD; finding the 0 element doesn't
- Guesses as to why? ...Let's take a look at the assembly
- gcc is vectorizing the operations by itself and doing it very slightly better

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

- SIMD instructions may be a little slower on a per-operation basis (folklore is a factor of ≈ 2 even for the operation itself, but it seems modern implementations are much better)
- Cost to gather items in new location
- SIMD is not always faster

How much can we save using SIMD? Let's say we're using 256 bit registers, and operating on 32 bit data.

- Factor of $256 / 32=8$ at absolute best
- Realistically is going to be quite a bit lower in practice

Tradeoffs

- Bear in mind Amdahl's law when considering SIMD
- Only worth using on the most costly operations, and only when they work very well with SIMD

One Question

- What's a problem we've seen this semester that is particularly suited for SIMD speedup?
- Hint: I'm not referring to any of the assignment problems
- Matrix multiplication: lots of time doing multiplications on successive matrix elements
- (SIMD works for some other problems too; I just wanted to highlight this as one of the classic examples.)

Compiler?

- A lot of the examples we saw were super simple
- Can the compiler use these operations automatically?
- As we just saw: yes it can
- --ftree-vectorize
- --ftree-loop-vectorize (turned on with 03)
- Lots of extra option to tune gcc parameters for how it vectorizes
- But, as always, only is going to work in "obvious" situations.

Automatic Vectorization Example

void addArrays(int* A, int* B, int size){
void addArrays(int* A, int* B, int size){
for(int i = 0; i < size; i++) {
for(int i = 0; i < size; i++) {
A[i] += B[i];
A[i] += B[i];
}
}
}
}
int main() \{
int* $A=\operatorname{malloc}(800 * \operatorname{sizeof}(* A))$;
int* $B=\operatorname{malloc}(800 * s i z e o f(* B))$;
for(int $i=0 ; i<800 ; i++)\{$
$\mathrm{A}[\mathrm{i}]=\mathrm{i}$;
$B[i]=800-i ;$
\}
addArrays(A, B, 8);

```
# autosimd.c:10: A[i] += B[i];
    .loc 1 10 8 is_stmt 0 discriminator 3 view .LVU7
    movdqu (%rdi,%rax), %xmm0 # MEM[base: A_12(D),
    movdqu (%rsi,%rax), %xmm1 # MEM[base: B_13(D)
    paddd %xmm1, %xmm0 # tmp154, vect _ 7.16
    movups %xmm0, (%rdi,%rax) # vect__7.16, MEM[base
    .loc 1927 is_stmt 1 discriminator 3 view .LVU8
    .loc 1 9 17 discriminator 3 view .LVU9
    addq $16, %rax #, ivtmp. }3
```

We can see the paddd SIMD instruction (on xmm1 and xmm0) when compiling with -03.

