Lecture 12: Locality-Sensitive Hashing and
MinHash

Sam McCauley
October 21, 2021

Williams College

e Mini-Midterm 1 handed back

e Assignment 5 out this afternoon

e |eaderboard is back this week

e Mini-Midterm 2 next week

SIMD Cliffhanger

e We ended right before
starting SIMD last time!

e Need to focus on
Assignment 5 today
e If we don’t get to SIMD

we'll do it on Monday

e There is one SIMD part of
the assignment (but you

can do the rest without
SIMD)

Mini-Midterm 1 review

Comments on Mini-Midterm 1

e Lots of good solutions; questions generally went well
e Biggest difference between solutions: how to store buckets?

o Let's look at a few options. We'll be using hash buckets (and
doing compare-all-pairs within each bucket) on Assignment 5

too.

Storing Buckets: arrays

1. Store array of size n
e Easy, effective
e Space increases by # buckets. Could run out of memory on
large input with high SHIFT.
2. Dynamic arrays: if bucket fills up, double size
e Can use realloc
e Insert-only, so can just double every time size is a power of two

e Effective; space-efficient. But requires extra work to implement

3. Count bucket sizes beforehand; allocate array of correct size

e Pretty easy and effective. Does require some extra coding (and
an extra scan through the data)

Storing Buckets: Other Methods

e Linked List?

e Easy (7) (need to make a struct for the node, but
straightforward after that modulo some pointer issues)

e Not cache-efficient to traverse!

e One option: before calling Naive 3SUM on a bucket, first
transfer list to an array
e This means Naive 3SUM on buckets of size X costs O(X)
extra cache misses
e But after that it's cache-efficient
e ..but does that matter if 3X < M?

Storing Buckets: Other Methods

e Sorting!

e Sort elements by their hash value. If two elements have the
same hash value, compare by their actual value

e After one call to sort: buckets are all sorted and stored

contiguously in memory

e Very very easy! And can store in-place
e Downsides:

e need to store hashes of each element (or recalculate every
comparison).

e Have to be careful when comparing

Any other mini-midterm 1 questions?

How the semester is going

Really well on my end.

These are hard topics

but I'm seeing consistently good understanding in the class

Hopefully hitting a good balance between a challenge and

causing stress

Especially important during a Covid semester

Median assignment grade: 94

Median mini-midterm 1 grade: 94.5

e Seems reasonable to me

Grading is a bit tricky on take-home programming
assignments

e Only real way to get points off is to not notice a problem, or
to run out of time

e Challenging assignments can wind up being a matter of how
much time each student spends rather than how much each
gets correct. (Hopefully not too much!)

e May smooth out a bit in Part 3 of class, which doesn’t have

any C programming

Finding Similar Items

Back to Normal Inputs

e Today: no more streaming! Have all data available to us.
e But data is still big!

e In particular: high-dimensional
e Table with many columns

e For each netflix user, what movies have they seen

e Goal: solve a difficult, but important, problem

10

Finding Similar Pair

e Given a set of objects

e Find the most similar pair
of objects in the set

11

Why Find Similar Objects?

e Find similar news articles for user suggestions.

e Similar music: Spotify suggests music by finding similar users,
and selecting what they listen to

e Machine learning in general (training, evaluation, actual
algorithms, etc.)

e Data deduplication, etc.

e "Give me a similar pair in this dataset” is a common query!

12

Strategies for Similarity Search

First attempt: 1-dimensional data

92

44 e Given a list of numbers

7 e “Similarity” is the

65 difference between them

60 e How can we find the closest
23 numbers (i.e. ones with

80 smallest difference)?

67

13

First attempt: 1-dimensional data

(S
Aside: can we do better? Yes, there’s a 5n we do

clever O(n) algorithm based on

sampling.
60 o _
65 e Step 2: Scan through list,
57 find most similar adjacent
elements.
80
9 e O(nlogn) time

Two-dimensional Data?

e o g
L e You likely saw this in CS
° ¢ 256.
° ® ¢+ Divide and conquer,
... O(nlog n) time.
o ® ° o e (Again, possible in O(n))
[)

ii5)

What About Higher Dimensions?

We want VERY high dimensions (millions)

Songs listened to, movies watched, image tags, etc.

Words that appear in a book, k-grams that appear in a DNA
sequence

Classic options: quad trees, kd trees

16

How Efficient are High-dimensional Algorithms?

i Mlannii P
o o T u
smer] o = T | e O(nlogn) for constant
o . B o dimensions
e But: exponential in
dimension!
e mny H ° Worse than trying all pairs
e FH Y i . if > log n dimensions
TR | T
e ¥ Hel b aE .

17

Curse of Dimensionality

e Many problems have running time exponential in the
dimension of the objects.

e Well-known phenomenon

e Applies to similarity search, machine learning, combinatorics

e Approximate techniques, like those we learn about today, are

underused to a slightly shocking extent—even in ML people
sometimes keep dimensionality low to avoid this issue,

affecting the quality of results

18

Avoiding the Curse of Dimensionality

e Today we're talking about how to get efficient algorithms for
arbitrarily large dimensions.

e Linear cost in terms of dimension (but expensive in terms of
the problem size).

We'll come back

e Two tools to get us there: to this later

e Assume that the close pair is much _clesér than any other
(approximate closest pair)

e Use hashing! ...A special kind of hashing

e For many of these problems, random inputs are worst-case
inputs

e Worst case behavior actually occurs for many common use
cases; guarantees (even approximate) can be very valuable

19

Locality-Sensitive Hashing

Locality-Sensitive Hashing

e Normally, hashing spreads out elements.

e This is key to hashing: no matter how clustered my data
begins, | wind up with a nicely-distributed hash table

e Locality-sensitive hashing tries to hash similar items together

20

Locality-Sensitive Hashing: Formal Definition

Needs a similarity threshold r, an approximation factor ¢ < 1

e Two guarantees:

e If two items x and y have similarity > r, h(x) = h(y) with
probability at least p;.

e If two items x and y have similarity < cr, h(x) = h(y) with
probability at most p».

High level: close items are likely to collide. Far items are
unlikely to collide.

Generally want p; to be about 1/n; then we get a normal
hash table for far (i.e. distance > cr) elements.

21

Why Locality-Sensitive Hashing Helps

| | (101, 37, 65) (103,37,64) | (91,84,3) | | (100,18,79) |
0 1 2 3 4

Ideally, close items hash to the same bucket.

22

Issue: Low probability of success!

We'll put numbers

on this later

e If we have pp = 1/n, then p; isTsually very small.
e How can we increase this probability?
e Repetitions! Maintain many hash tables, each with a different

locality-sensitive hash function, and try all of them.

23

LSH with Repetitions

(101, 37, 65) | (103,37,64) (91,84,3) (100,18,79)
0 1 2 3 4
(101,37,65)
. (91,84,3) (100,18,79)
0 1 2 3 4
(91,84,3)
(101, 37, 65) (103,37,64) G
0 1 2 3 4

24

Similarity

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

e What about sets?

e Songs listened to by a user
e Movies watched by a user
e Human-generated tags given to an image

e Words that appear in a document

e Need a way to measure set similarity

25

Set Similarity

User 1 User 2
Post Malone | Ariana Grande
Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

e When are two sets similar?

e Let's look at our two sets.
Similar if they have a lot of
overlap

e |.e. : lots of artists in
common, compared to total
artists in either list

26

Set Similarity

Not very similar!

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

e When are two sets similar?

e Let's look at our two sets.
Similar if they have a lot of
overlap

e |.e. : lots of artists in
common, compared to total
artists in either list

27

Set Similarity

Moderately similar

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid Drake
Drake Travis Scott
Travis Scott Taylor Swift

e When are two sets similar?

e Let's look at our two sets.
Similar if they have a lot of
overlap

e |.e. : lots of artists in
common, compared to total
artists in either list

28

Jaccard Similarity

Jaccard Similarity

e Similarity measure for sets A and B

e Defined as:
|AN B|

|AU B|

e Intuitively: what fraction of these sets overlaps?

29

Jaccard Similarity Intuition 1

loU: 0.4034 loU: 0.7330 loU: 0.9264

Poor Good Excellent

30

Jaccard Similarity Intuition 2

Area of Overlap

loU =

Area of Union

31

Image Search Example

32

Jaccard Example 1

Userl | User2 | | giitarity: |ANBI/|AUB].
Post Malone | Ariana Grande « JANB| = 4
Ariana Grande Khalid
Khalid Drele o puE] =8
Drake T Saa e Jaccard Similarity: 4/5 = .8
Travis Scott

33

Set Similarity

Not very similar!

e User2 | | Similarity: |ANBI/|AUB].
Post Malone | Ariana Grande .« |ANB|=1
Ariana Grande

Khalid O A =2

Drake e Jaccard Similarity: 1/5 = .2
Travis Scott

34

Set Similarity

Moderately similar

User 1 User 2 ‘ Similarity: |ANB|/|AUB].
Post Malone | Ariana Grande IANB| =3

Ariana Grande | Ed Sheerhan

AUB| =7
Khalid Drake e |[AUB]

Drake Tk Saati: e Jaccard Similarity:
Travis Scott Taylor Swift 3/7=10.428

85

Jaccard Similarity: Properties

Works on sets (each dimension is binary—an item is in the

set, or not in the set)

Always gives a number between 0 and 1

1 means identical, 0 means no items in common

Jaccard similarity ignores items not in either set. So we learn
nothing if neither of us like an artist. (Is this good?)

Still works if one list is much longer than the other.
(Generally, they'll have small similarity)

36

Locality-Sensitive Hash for Jaccard Similarity

e Want: items with high Jaccard Similarity are likely to hash
together

e Items with low Jaccard Similarity are UNlikely to hash
together

e Classic method: MinHash

37

MinHash

e Developed by Andrei Broder in 1997 while working at
AltaVista

e (AltaVista was probably the most popular search engine
before Google, they wanted to detect similar web pages to
eliminate them from search results)

e Now used for similarity search, database joins,
clustering—LOTS of things.

38

AltaVista

;%A"ﬂ\"lslﬂ HOME - Netscape
File Edit Wiew Go Communicator Help

1 & & A N 2 @ < & @

Back Forward Reload Harme Search Netscape Print Security =iee]

% w§ Bookmarks J Location:[htp:/ www.altaviste.com/

October 23, 1999 POT

The mu;t powerful and useful guide to the Net
My AltaVista Shopping.com Zip2 com |

QNI i
Ask AltaVista™ a question. Or enter a few words in |any language Advanced Text Search
Search For: © WebPages © Images © Video © Audio T
Search tip:

I use image search
Example: When precisely will the new millennium begin?

ALTAVISTA CHANNELS - My AltaVista - Finance - Travel - Shopping - Careers - Health - News -
Entertainment

FREE INTERNET ACCESS - Download Now "'* - Support USEFUL TOOLS -Family Filter - Translation
- Yellow Pages - People Finder - Maps - Usenet - Check Email

DIRECTORY ALTAVISTA HIGHLIGHTS TRY THESE
Automotive POWER SEARCH SEARCHES... .
» BIG changes coming to AltaVista 1025 -Info Search for Halloween in

Business & Finance

" amniitare R Intarnat

il |Document: Done

inside!

39

Bit Vectors

e Can represent any set as a vector of bits

e Each bit is an item. “1" means that that item is in the set,

“0" means it's not

e So if I'm keeping track of different people’s favorite colors, my
universe may be {red, yellow, blue, green, purple, orange}

o If someone likes red and blue, we can store that information
as 101000.

o Effective if universe is smallish; use a list for larger universe

40

Bit Vectors: Jaccard Similarity

e How can we determine AN B?

e This is exactly A & B in C-style notation

e What about AU B?

e This is exactly A | B in C-style notation

e We want the size of these sets—need to count the number of
1sin A& B, or A|B.

41

128 in the

assignment

e The hash consists of apg&mutation of all possible items in

the universe

e To hash a set A: find the first item of A in the order given by

the permutation. That item is the hash value!

42

MinHash example

e Let's stick with favorite colors, out of {red, yellow, blue,
green, purple, orange}

e To hash, we randomly permute them. Let’s say our current
hash is given by the permutation (blue, orange, green, purple,
red, yellow)

o First set is 101000 (same as {red, blue}). blue is in the set, so
the hash value is blue.

e Second set is 110010 (we could also write {red, yellow,
purple}). blue is not in the set; nor is orange; nor is green.
purple is, so purple is the hash value

43

MinHash for Bit Vectors

e On the assignment, have bit vectors of length 128

e To get a hash function, we need a random permutation of the
indices of these bits. That is to say, a random permutation of
{0,1,2,...,127}

e To hash an item x, go through the For the sake . Find

the first index 7 in the list such tha of space let's
e Let's say x = 10100101, ang 50,8 o
(1,5,2,0,7,6,4,3).

e Then the hash of x is 5.

44

e A single MinHash: hashes each set to one of its elements (i.e.
the position of one of its one bits)

e Not useful yet—output is too small

45

Analysis of Basic MinHash

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any item that is not in A or B.

e Look at the first index in the permutation that is in A or B
(i.e. itisin AUB)

e If this index is in both A and B, then h(A) = h(B)
e If this index is in only one of A or B, then h(A) # h(B)

e Any index in AU B is equally likely to be first. If the index is
in AN B, they hash together; otherwise they do not

e Therefore: probability of hashing together is |[AN B|/|AU B).

46

MinHash as an LSH

e This means MinHash is an LSH!

e If two items have similarity at least r, they collide with
probability at least r

e If two items have similarity at most cr, they collide with
probability at most cr

47

Analysis: Phrased as bit vectors

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any index that is 0 in both A and B.
e Look at the first index in the permutation thatis 1 in A or B

e If this index is in both A and B, then h(A) = h(B)
e If this index is in only one of A or B, then h(A) # h(B)

e Any index that is 1 in A|B is equally likely to be first. If the
index is in A&B, they hash together; otherwise they do not

e Therefore: probability of hashing together is
(number of 1s in A&B)/(number of 1s in A|B).

48

Analysis Example

e Let's say we have A = {red, blue, green} and B = {red,
orange, purple, green}.

e When do A and B hash together?

e If red or green appears before blue, orange, and purple then
they hash together

e If blue or orange or purple appear before red and green, then
they don't hash together

e Probability that red or green is first out of {red, blue, green,
orange, purple} is 2/5.

e Therefore, A and B hash together with probability 2/5.

49

Making Sure We Find the Close Pair

e To find the close pair, compare all pairs of items that hash to
the same value

o (We'll talk about how to do this later—it's similar to
MiniMidterm 1)

e Let's say our close pair has similarity .5. How many times do
we need to repeat?

e Each repetition has the close pair in the same bucket with

probability .5. So need 2 repetitions in expectation.

50

An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in
expectation it takes 1/p iterations of the process before success.

Examples:

e It takes two coin flips in expectation before we see a heads

e We need to roll a 6-sided die 6 times before we see (say) a
three.

Proof:

N ip(l-p) = P = L

2 A—G—p)2 b

Bl

Concatenations and Repetitions

Problems with this Approach

e Buckets are really big!! (After all, lots of items are pretty
likely to have a given bit set.)

e How can we decrease the probability that items hash
together?

e Answer: concatenate multiple hashes together.

52

Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes
h1, ho, ... hy, each with its own permutation Py, Pa, ... P.

e To hash an item: repeat the process of searching through the
permutation for each hash. Then concatenate the results
together (can just use string concatenation)

e How does this affect the probability for sets A and B?

e For each of the k independent hashes, A and B collide with
probability |[AN B|/|AU B].

e We only obtain the same concatenated hashes if all of the
hashes are the same.

e They are independent, so we can multiply to obtain probability
(JAN B|/|AU B|) of A and B colliding.

53

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e lLet's hash A.

e First hash: red is in A.
e Second hash: orange not in A, nor is green. Blue is in A.

e Third hash: red is in A.

e Concatenating, we have h(A) = redbluered

54

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash B.

e First hash: red is in B.
e Second hash: orange is in B.

e Third hash: red is in B.

e Concatenating, we have h(B) = redorangered

55

Putting it all Together

e For each hash table, we concatenate k hashes.

e Hash all items into buckets. Check every pair of items in each
bucket and see if it's the closest

e Quite often we'll get unlucky and the close pair won't be in
the same bucket. What can we do?

e Need to repeat all of that multiple times until we find the

close pair (let's say we repeat R times)
e So: overall need kR permutations

e What kind of values work for k and R?

56

Putting it Together: Analysis

Let's say we have a set of n items xi, ..., x,

The close pair of items has Jaccard similarity 3/4

Every other pair of items has similarity 1/3

How should we set k? How many repetitions R is it likely to
take?

57

Putting it Together: Analysis (Finding k)

Non-similar pairs have similarity 1/3

We want buckets to be small (have O(1) size)

Look at an element x;. What is the expected size of its
bucket?

>22i(1/3)% (since x; and any x; with j # i share a hash value
with probability 1/3)

We can then solve (n — 1)(1/3)k =1 to get k = logz(n — 1).

58

Putting it Together: Analysis (Predicting R)

e The similar pair has Jaccard similarity .75

e So they are in the same bucket with probability (.75)*

We have k = (logz n — 1). So....we need to do some algebra.
(Let's assume that k is already an integer)

(.75)'083(n—1) — ploga(n—1)log>(3/4)/log(3) —
(n _ 1)Iog(3/4)/|og(3) ~ 1/n.26

So we expect about R = n'?® repetitions. That's a lot!

But it's essentially the best we know how to do.

59

Finding R and k in general

Let's say we have n points where the close pairs have similarity ji,
and all other pairs have similarity at most j,

e First, set k so that each bucket has size O(1): k = logy ;, n.

e Doable at home: show that this is the optimal value for k.

e Then, number of R we need in expectation is:

k logy /. n
() = ()™= e
J1 J1

60

Practical MinHash Considerations

So many Permutations!

e OK, so kR repetitions is a LOT of preprocessing, and a lot of
random number generation

e And most of this won't ever be used! Most of the time, when
we hash, we don't make it more than a few indices into the
permutation.

e Idea: Instead of taking just the first hash item that appears in
the permutation, take the first (say) 3. Concatenate them
together. Then we just need k/3 permutations per hash table
to get similar bounds.

e So let's say we have A = {black, red, green, blue, orange},
and we're looking at a permutation P = {purple, red, white,
orange, yellow, blue, green, black}.

e Then A hashes to redorangeblue

61

Reducing Permutations

e If you take the k first items when hashing, rather than just
taking the first one, we only need kR//? total permutations.

e Does this affect the analysis?

e Yes; the k we're concatenating for each hash table are no
longer independent!

e But this works fine in practice (and is used all the time)

62

Problems with Expectation

We chose parameters so that buckets are small in expectation

(i.e. on average)

e But: time to process a bucket is quadratic.

So getting unlucky is super costly!

e What can we do if we happen to get a big bucket?

63

Handling Big Buckets

e One option: recurse!

e Take all items in any really
large bucket, rehash them
into subbuckets

’ I I I I ‘ o Might need to repeat

’ I ‘ ’ | ‘ e This option can shave off

small but significant

running time

e (Not required; just one
optimization suggestion.)

64

Assignment Parameters

e 128 bit integers (stored as two unsigned 64 bit ints “ltem")

Universe: {0,...,127}. (You can pretend that these are
images, each of which is labelled with a subset of 128 possible

tags.)

Each bit is a 0 or 1 at random

(Not realistic case, but hard case!)

65

What About Hashing?

MinHash: go through each index in the permutation

See if the corresponding bit is a 1 in the element we're

hashing.

How can we do this?

Most efficient way | know is not clever. Just go through each
index, and check to see if that bit is set (say by calculating x
& (1 << index) —but remember that these are 128 bits)

66

Concatenating Indices

e Each time you hash you'll get k indices

e Each is a number from 0 to 127

e How can these get concatenated together?
e Option 1: convert to strings, call strcat

e Note: need to make sure to convert to three-digit strings!
Otherwise hashing to 12 and then 1 will look the same as
hashing to 1 and then 21. (012 and 001 instead)

e Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

67

Getting a Good k

In theory we want buckets of size 1.
In practice, we want slightly bigger.

Why? Lots of buckets and lots of repetitions have bad
constants.

Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

Start with k =~ logsz n, but experiment with slightly smaller

values.

68

Repetitions?

e You're guaranteed that there exists a close pair in the dataset

e My implementation just keeps repeating until the pair is found
(no maximum number of repetitions)

e The discussion of repetitions in the lecture is for two reasons:
1. analysis, 2. give intuition for the tradeoff by varying k

69

How to Deal with Buckets?

e Each time we hash, (i.e. build a new "hash table”) need to
figure out what hashes where so that we can compare
elements with the same hash

e Unfortunately, we're not hashing to a number from (say) 0 to
n — 1. We're instead concatenating indices

e How to keep track of buckets?
e Similar to mini-midterm 1: may want to create buckets. Can

also do it in-place using sorting.

70

Storing a Hash

e Just need a permutation on {0,..., 127}
e How can we store that?

e First key observation: we (basically) never make it through
the whole permutation (we'll always see at least one 1 first)

e Taking that a bit further: we only really need the first few
indices. If we're using k indices from one ordering, something
like 8k or 16k will almost certainly suffice.

e What about elements that hash further? Answer: just give
them the value of the last index in the ordering.

71

Truncating Hash Example

e |let's say our permutation is
{47,11,85,64,13,74,70,107,112,103,7,95,3,...} and
k=2

e | only store {47,11,85,64,13,74,107,112}. If we go past 112
for some x, and we have not seen k indices that are a 1 in x, |

just write 112 until | get k numbers.

72

Takeaway from Truncating Hashes

e This means we can store fewer bits, fewer random numbers

e Might be easier to handle. (Arrays of size 16-20 are nicer than
arrays of size 128.)

73

Back to SIMD

SIMD on lab computers

(gdb) print $ymmO

$1 = {

v8_float={0,0,0,0,0,0,0,0%},

v4_double={0,0,0,0},

v32_int8={0 <repeats 32
times>},

v16_int16={0 <repeats 16
times>},

v8_int32={0,0,0,0,0,0,0,0%},

v4_int64={0,0,0,0},

v2_int128={0,0}

}

We have SSE, AVX, AVX2
instruction sets (don't have
AVX-512)

16 “YMM" registers; each
256 bits

(Older processors may only
have 128 bit "XMM"
registers.)

Need to include #include
<immintrin.h> and

compile with -mavx2

74

SIMD Examples

What is SIMD good for?

e Lots of identical operations on a set of elements; these
operations are costly

e Elements are in nicely-sized chunks

e Can always used specialized code to handle other cases

75

Example 1: Adding two arrays

e Let's add two arrays of 8 32-bit integers with one SIMD
operation

e simdtests.c

76

Assembly examples

.LBE24:
simdtests.c:23: _ m256i b = _mm256_set_epi32(B[7], BI[6]1, B[5]1, B[4], B[3], B[2], B[1], B[@l);
.loc 1 23 14
vmovdga %ymm@, 160(%rsp) # D.25654, b
vmovdgqa 128(%rsp), Symmo # a, tmpl78
vmovdqa %ymm@, 256(%rsp) # tmpl178, _A
vmovdqa 160(%rsp), %ymmo # b, tmpl79
vmovdqa %ymm@, 288(%rsp) # tmpl79, _ B

.loc 3 121 33
vpaddd S%ymm@, Symml, Symm@ # 76, _75, _77

7

Example 2: Adding single value to array

e Let's add one value (10) to an array.

e Do we need to declare a new array to do this? Or can we
make a vector of 10s manually?

78

Speed comparison

e How much time does SIMD add (in total in our
implementation) take compared to normal add?

e It's a bit faster

79

Example 3: Searching for Particular Value in Array

e Can do vector comparisons, but get a 256 bit vector out

e Need a way to make that vector into something useful for us.
Let's look at the code.

e int mm256 movemask epi8(.mm256 arg): returns a 32 bit
int where the ith bit of the int is the first bit in the ith byte
of the argument arg

80

Optimization comparison?

What happens when we change to 037

Everything gets faster!

e In previous tests: for adding, normally suddenly outpaces
SIMD; finding the 0 element doesn't

Guesses as to why? ...Let's take a look at the assembly

e gcc is vectorizing the operations by itself and doing it very
slightly better

81

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

e SIMD instructions may be a little slower on a per-operation
basis (folklore is a factor of ~ 2 even for the operation itself,
but it seems modern implementations are much better)

e Cost to gather items in new location

e SIMD is not always faster

How much can we save using SIMD? Let's say we're using 256 bit
registers, and operating on 32 bit data.

e Factor of 256/32 = 8 at absolute best

e Realistically is going to be quite a bit lower in practice

82

Tradeoffs

e Bear in mind Amdahl’s law when considering SIMD

e Only worth using on the most costly operations, and only
when they work very well with SIMD

83

e What's a problem we've seen this semester that is particularly
suited for SIMD speedup?

e Hint: I'm not referring to any of the assignment problems

e Matrix multiplication: lots of time doing multiplications on
successive matrix elements

e (SIMD works for some other problems too; | just wanted to
highlight this as one of the classic examples.)

84

A lot of the examples we saw were super simple

Can the compiler use these operations automatically?

As we just saw: yes it can
o ——ftree-vectorize
e —-ftree-loop-vectorize (turned on with 03)
e Lots of extra option to tune gcc parameters for how it
vectorizes

But, as always, only is going to work in “obvious” situations.

85

Automatic Vectorization Example

void addArrays(intx A, intx B, int size){

for(int i i< size; i++) {

A[i] += B[il; # autosimd.c:10: Ali] += BIil;

.loc 1 10 8 is_stmt @ discriminator 3 view
movdqu (%rdi,%rax), %xmm@ # MEM[base: A
movdqu (%rsi,%rax), %xmml # MEM[base:
paddd %xmml, %xmm@ # tmpl54, vect__7.16
movups %xmm@, (%rdi,%rax) # vect_ 7.16, MEM[base
. . .loc 1 9 27 is_stmt 1 discriminator 3 view .LVU8
int main() { .loc 1 9 17 discriminator 3 view .LVU9
addq $16, %rax #, ivitmp.30
intx A = malloc(800xsizeof(xA));
intx B = malloc(800xsizeof(xB));

for(int i = i< 800; i++) {
Ali]l = 1
i] = 800 -i;

addArrays(A, B, 8)f We can see the paddd SIMD in-
struction (on xmm1 and xmmO)

when compiling with -03.

86

	Mini-Midterm 1 review
	Finding Similar Items
	Strategies for Similarity Search
	Locality-Sensitive Hashing
	Similarity
	Jaccard Similarity
	MinHash
	Analysis of Basic MinHash
	Concatenations and Repetitions
	Practical MinHash Considerations
	Back to SIMD
	SIMD Examples
	SIMD Discussion

