
Lecture 12: Locality-Sensitive Hashing and

MinHash

Sam McCauley

October 21, 2021

Williams College

Admin

• Mini-Midterm 1 handed back

• Assignment 5 out this afternoon

• Leaderboard is back this week

• Mini-Midterm 2 next week

1

SIMD Cliffhanger

• We ended right before

starting SIMD last time!

• Need to focus on

Assignment 5 today

• If we don’t get to SIMD

we’ll do it on Monday

• There is one SIMD part of

the assignment (but you

can do the rest without

SIMD)

2

Mini-Midterm 1 review

Comments on Mini-Midterm 1

• Lots of good solutions; questions generally went well

• Biggest difference between solutions: how to store buckets?

• Let’s look at a few options. We’ll be using hash buckets (and

doing compare-all-pairs within each bucket) on Assignment 5

too.

3

Storing Buckets: arrays

1. Store array of size n

• Easy, effective

• Space increases by # buckets. Could run out of memory on

large input with high SHIFT.

2. Dynamic arrays: if bucket fills up, double size

• Can use realloc

• Insert-only, so can just double every time size is a power of two

• Effective; space-efficient. But requires extra work to implement

3. Count bucket sizes beforehand; allocate array of correct size

• Pretty easy and effective. Does require some extra coding (and

an extra scan through the data)

4

Storing Buckets: Other Methods

• Linked List?

• Easy (?) (need to make a struct for the node, but

straightforward after that modulo some pointer issues)

• Not cache-efficient to traverse!

• One option: before calling Naive 3SUM on a bucket, first

transfer list to an array

• This means Naive 3SUM on buckets of size X costs O(X)

extra cache misses

• But after that it’s cache-efficient

• ...but does that matter if 3X < M?

5

Storing Buckets: Other Methods

• Sorting!

• Sort elements by their hash value. If two elements have the

same hash value, compare by their actual value

• After one call to sort: buckets are all sorted and stored

contiguously in memory

• Very very easy! And can store in-place

• Downsides:

• need to store hashes of each element (or recalculate every

comparison).

• Have to be careful when comparing

6

Any other mini-midterm 1 questions?

7

How the semester is going

• Really well on my end.

• These are hard topics

• but I’m seeing consistently good understanding in the class

• Hopefully hitting a good balance between a challenge and

causing stress

• Especially important during a Covid semester

8

Grades so far

• Median assignment grade: 94

• Median mini-midterm 1 grade: 94.5

• Seems reasonable to me

• Grading is a bit tricky on take-home programming
assignments

• Only real way to get points off is to not notice a problem, or

to run out of time

• Challenging assignments can wind up being a matter of how

much time each student spends rather than how much each

gets correct. (Hopefully not too much!)

• May smooth out a bit in Part 3 of class, which doesn’t have

any C programming

9

Finding Similar Items

Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each netflix user, what movies have they seen

• Goal: solve a difficult, but important, problem

10

Finding Similar Pair

• Given a set of objects

• Find the most similar pair

of objects in the set

11

Why Find Similar Objects?

• Find similar news articles for user suggestions.

• Similar music: Spotify suggests music by finding similar users,

and selecting what they listen to

• Machine learning in general (training, evaluation, actual

algorithms, etc.)

• Data deduplication, etc.

• “Give me a similar pair in this dataset” is a common query!

12

Strategies for Similarity Search

First attempt: 1-dimensional data

92

44

7

65

60

23

80

67

• Given a list of numbers

• “Similarity” is the

difference between them

• How can we find the closest

numbers (i.e. ones with

smallest difference)?

13

First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do

this?

• Step 1: Sort!

• Step 2: Scan through list,

find most similar adjacent

elements.

• O(n log n) time

14

Aside: can we do better? Yes, there’s a

clever O(n) algorithm based on

sampling.

Two-dimensional Data?

• You likely saw this in CS

256.

• Divide and conquer,

O(n log n) time.

• (Again, possible in O(n))

15

What About Higher Dimensions?

• We want VERY high dimensions (millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA

sequence

• Classic options: quad trees, kd trees

16

How Efficient are High-dimensional Algorithms?

• O(n log n) for constant

dimensions

• But: exponential in

dimension!

• Worse than trying all pairs

if > log n dimensions

17

Curse of Dimensionality

• Many problems have running time exponential in the

dimension of the objects.

• Well-known phenomenon

• Applies to similarity search, machine learning, combinatorics

• Approximate techniques, like those we learn about today, are

underused to a slightly shocking extent—even in ML people

sometimes keep dimensionality low to avoid this issue,

affecting the quality of results

18

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for

arbitrarily large dimensions.

• Linear cost in terms of dimension (but expensive in terms of

the problem size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other

(approximate closest pair)

We’ll come back

to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case
inputs

• Worst case behavior actually occurs for many common use

cases; guarantees (even approximate) can be very valuable

19

Locality-Sensitive Hashing

Locality-Sensitive Hashing

• Normally, hashing spreads out elements.

• This is key to hashing: no matter how clustered my data

begins, I wind up with a nicely-distributed hash table

• Locality-sensitive hashing tries to hash similar items together

20

Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r , an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r , h(x) = h(y) with

probability at least p1.

• If two items x and y have similarity ≤ cr , h(x) = h(y) with

probability at most p2.

• High level: close items are likely to collide. Far items are

unlikely to collide.

• Generally want p2 to be about 1/n; then we get a normal

hash table for far (i.e. distance ≥ cr) elements.

21

Why Locality-Sensitive Hashing Helps

(101, 37, 65) (103,37,64) (91,84,3) (100,18,79)

0 1 2 3 4

Ideally, close items hash to the same bucket.

22

Issue: Low probability of success!

• If we have p2 = 1/n, then p1

We’ll put numbers

on this later

is usually very small.

• How can we increase this probability?

• Repetitions! Maintain many hash tables, each with a different

locality-sensitive hash function, and try all of them.

23

LSH with Repetitions

(101, 37, 65) (103,37,64) (91,84,3) (100,18,79)

0 1 2 3 4

(101,37,65)

(103,37,64)
(91,84,3) (100,18,79)

0 1 2 3 4

(101, 37, 65) (103,37,64)
(91,84,3)

(100,18,79)

0 1 2 3 4

24

Similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

25

Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• When are two sets similar?

• Let’s look at our two sets.

Similar if they have a lot of

overlap

• I.e. : lots of artists in

common, compared to total

artists in either list

Very similar!

26

Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

• When are two sets similar?

• Let’s look at our two sets.

Similar if they have a lot of

overlap

• I.e. : lots of artists in

common, compared to total

artists in either list

Not very similar!

27

Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

• When are two sets similar?

• Let’s look at our two sets.

Similar if they have a lot of

overlap

• I.e. : lots of artists in

common, compared to total

artists in either list

Moderately similar

28

Jaccard Similarity

Jaccard Similarity

• Similarity measure for sets A and B

• Defined as:
|A ∩ B|
|A ∪ B|

• Intuitively: what fraction of these sets overlaps?

29

Jaccard Similarity Intuition 1

30

Jaccard Similarity Intuition 2

31

Image Search Example

32

Jaccard Example 1

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• Similarity: |A∩B|/|A∪B|.
• |A ∩ B| = 4

• |A ∪ B| = 5

• Jaccard Similarity: 4/5 = .8

Very similar!

33

Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

• Similarity: |A∩B|/|A∪B|.
• |A ∩ B| = 1

• |A ∪ B| = 5

• Jaccard Similarity: 1/5 = .2

Not very similar!

34

Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

• Similarity: |A∩B|/|A∪B|.
• |A ∩ B| = 3

• |A ∪ B| = 7

• Jaccard Similarity:

3/7 = 0.428

Moderately similar

35

Jaccard Similarity: Properties

• Works on sets (each dimension is binary—an item is in the

set, or not in the set)

• Always gives a number between 0 and 1

• 1 means identical, 0 means no items in common

• Jaccard similarity ignores items not in either set. So we learn

nothing if neither of us like an artist. (Is this good?)

• Still works if one list is much longer than the other.

(Generally, they’ll have small similarity)

36

Locality-Sensitive Hash for Jaccard Similarity

• Want: items with high Jaccard Similarity are likely to hash

together

• Items with low Jaccard Similarity are UNlikely to hash

together

• Classic method: MinHash

37

MinHash

MinHash

• Developed by Andrei Broder in 1997 while working at

AltaVista

• (AltaVista was probably the most popular search engine

before Google, they wanted to detect similar web pages to

eliminate them from search results)

• Now used for similarity search, database joins,

clustering—LOTS of things.

38

AltaVista

39

Bit Vectors

• Can represent any set as a vector of bits

• Each bit is an item. “1” means that that item is in the set,

“0” means it’s not

• So if I’m keeping track of different people’s favorite colors, my

universe may be {red, yellow, blue, green, purple, orange}

• If someone likes red and blue, we can store that information

as 101000.

• Effective if universe is smallish; use a list for larger universe

40

Bit Vectors: Jaccard Similarity

• How can we determine A ∩ B?

• This is exactly A & B in C-style notation

• What about A ∪ B?

• This is exactly A | B in C-style notation

• We want the size of these sets—need to count the number of

1s in A & B, or A | B.

41

MinHash

• The hash consists of an permutation of all possible items in

the universe

128 in the

assignment

• To hash a set A: find the first item of A in the order given by

the permutation. That item is the hash value!

42

MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue,

green, purple, orange}

• To hash, we randomly permute them. Let’s say our current

hash is given by the permutation (blue, orange, green, purple,

red, yellow)

• First set is 101000 (same as {red, blue}). blue is in the set, so

the hash value is blue.

• Second set is 110010 (we could also write {red, yellow,

purple}). blue is not in the set; nor is orange; nor is green.

purple is, so purple is the hash value

43

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the

indices of these bits. That is to say, a random permutation of

{0, 1, 2, . . . , 127}

• To hash an item x , go through the random permutation. Find

the first index i in the list such that the ith bit of x is 1.

• Let’s say x = 10100101, and the permutation is

(1, 5, 2, 0, 7, 6, 4, 3).

For the sake

of space let’s

do 8 bits

• Then the hash of x is 5.

44

MinHash

• A single MinHash: hashes each set to one of its elements (i.e.

the position of one of its one bits)

• Not useful yet—output is too small

45

Analysis of Basic MinHash

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore

any item that is not in A or B.

• Look at the first index in the permutation that is in A or B
(i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) 6= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is

in A ∩ B, they hash together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

46

MinHash as an LSH

• This means MinHash is an LSH!

• If two items have similarity at least r , they collide with

probability at least r

• If two items have similarity at most cr , they collide with

probability at most cr

47

Analysis: Phrased as bit vectors

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore

any index that is 0 in both A and B.

• Look at the first index in the permutation that is 1 in A or B

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) 6= h(B)

• Any index that is 1 in A|B is equally likely to be first. If the

index is in A&B, they hash together; otherwise they do not

• Therefore: probability of hashing together is

(number of 1s in A&B)/(number of 1s in A|B).

48

Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red,

orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then

they hash together

• If blue or orange or purple appear before red and green, then

they don’t hash together

• Probability that red or green is first out of {red, blue, green,

orange, purple} is 2/5.

• Therefore, A and B hash together with probability 2/5.

49

Making Sure We Find the Close Pair

• To find the close pair, compare all pairs of items that hash to
the same value

• (We’ll talk about how to do this later—it’s similar to

MiniMidterm 1)

• Let’s say our close pair has similarity .5. How many times do

we need to repeat?

• Each repetition has the close pair in the same bucket with

probability .5. So need 2 repetitions in expectation.

50

An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in

expectation it takes 1/p iterations of the process before success.

Examples:

• It takes two coin flips in expectation before we see a heads

• We need to roll a 6-sided die 6 times before we see (say) a

three.

Proof:
∞∑
i=1

ip(1− p)i−1 =
p

(1− (1− p))2
=

1

p

51

Concatenations and Repetitions

Problems with this Approach

• Buckets are really big!! (After all, lots of items are pretty

likely to have a given bit set.)

• How can we decrease the probability that items hash

together?

• Answer: concatenate multiple hashes together.

52

Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes

h1, h2, . . . hk , each with its own permutation P1,P2, . . .Pk .

• To hash an item: repeat the process of searching through the

permutation for each hash. Then concatenate the results

together (can just use string concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with

probability |A ∩ B|/|A ∪ B|.
• We only obtain the same concatenated hashes if all of the

hashes are the same.

• They are independent, so we can multiply to obtain probability

(|A ∩ B|/|A ∪ B|)k of A and B colliding.

53

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange},
and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue,

red},P3 = {red, green, blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

54

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange},
and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue,

red},P3 = {red, green, blue, orange}

• Let’s hash B.

• First hash: red is in B.

• Second hash: orange is in B.

• Third hash: red is in B.

• Concatenating, we have h(B) = redorangered

55

Putting it all Together

• For each hash table, we concatenate k hashes.

• Hash all items into buckets. Check every pair of items in each

bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in

the same bucket. What can we do?

• Need to repeat all of that multiple times until we find the

close pair (let’s say we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

56

Putting it Together: Analysis

• Let’s say we have a set of n items x1, . . . , xn

• The close pair of items has Jaccard similarity 3/4

• Every other pair of items has similarity 1/3

• How should we set k? How many repetitions R is it likely to

take?

57

Putting it Together: Analysis (Finding k)

• Non-similar pairs have similarity 1/3

• We want buckets to be small (have O(1) size)

• Look at an element xi . What is the expected size of its

bucket?

•
∑

j 6=i (1/3)k (since xi and any xj with j 6= i share a hash value

with probability 1/3k)

• We can then solve (n− 1)(1/3)k = 1 to get k = log3(n− 1).

58

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n − 1). So....we need to do some algebra.

(Let’s assume that k is already an integer)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3) =

(n − 1)log(3/4)/ log(3) ≈ 1/n.26

• So we expect about R = n.26 repetitions. That’s a lot!

• But it’s essentially the best we know how to do.

59

Finding R and k in general

Let’s say we have n points where the close pairs have similarity j1,

and all other pairs have similarity at most j2

• First, set k so that each bucket has size O(1): k = log1/j2 n.

• Doable at home: show that this is the optimal value for k.

• Then, number of R we need in expectation is:(
1

j1

)k

=

(
1

j1

)log1/j2 n

= nlog(1/j2)(1/j1).

60

Practical MinHash Considerations

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of

random number generation

• And most of this won’t ever be used! Most of the time, when

we hash, we don’t make it more than a few indices into the

permutation.

• Idea: Instead of taking just the first hash item that appears in

the permutation, take the first (say) 3. Concatenate them

together. Then we just need k/3 permutations per hash table

to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange},
and we’re looking at a permutation P = {purple, red, white,

orange, yellow, blue, green, black}.
• Then A hashes to redorangeblue

61

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just

taking the first one, we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no

longer independent!

• But this works fine in practice (and is used all the time)

62

Problems with Expectation

• We chose parameters so that buckets are small in expectation

(i.e. on average)

• But: time to process a bucket is quadratic.

• So getting unlucky is super costly!

• What can we do if we happen to get a big bucket?

63

Handling Big Buckets

• One option: recurse!

• Take all items in any really

large bucket, rehash them

into subbuckets

• Might need to repeat

• This option can shave off

small but significant

running time

• (Not required; just one

optimization suggestion.)

64

Assignment Parameters

• 128 bit integers (stored as two unsigned 64 bit ints “Item”)

• Universe: {0, . . . , 127}. (You can pretend that these are

images, each of which is labelled with a subset of 128 possible

tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

65

What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the element we’re

hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each

index, and check to see if that bit is set (say by calculating x

& (1 << index) —but remember that these are 128 bits)

66

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

67

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Lots of buckets and lots of repetitions have bad

constants.

• Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller

values.

68

Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found

(no maximum number of repetitions)

• The discussion of repetitions in the lecture is for two reasons:

1. analysis, 2. give intuition for the tradeoff by varying k

69

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to

figure out what hashes where so that we can compare

elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to

n − 1. We’re instead concatenating indices

• How to keep track of buckets?

• Similar to mini-midterm 1: may want to create buckets. Can

also do it in-place using sorting.

70

Storing a Hash

• Just need a permutation on {0,. . . , 127}

• How can we store that?

• First key observation: we (basically) never make it through

the whole permutation (we’ll always see at least one 1 first)

• Taking that a bit further: we only really need the first few

indices. If we’re using k̂ indices from one ordering, something

like 8k̂ or 16k̂ will almost certainly suffice.

• What about elements that hash further? Answer: just give

them the value of the last index in the ordering.

71

Truncating Hash Example

• Let’s say our permutation is

{47, 11, 85, 64, 13, 74, 70, 107, 112, 103, 7, 95, 3, . . .} and

k̂ = 2.

• I only store {47, 11, 85, 64, 13, 74, 107, 112}. If we go past 112

for some x , and we have not seen k̂ indices that are a 1 in x , I

just write 112 until I get k̂ numbers.

72

Takeaway from Truncating Hashes

• This means we can store fewer bits, fewer random numbers

• Might be easier to handle. (Arrays of size 16-20 are nicer than

arrays of size 128.)

73

Back to SIMD

SIMD on lab computers

(gdb) print $ymm0
$1 = {

v8_float={0,0,0,0,0,0,0,0},

v4_double={0,0,0,0},

v32_int8={0 <repeats 32

times>},

v16_int16={0 <repeats 16

times>},

v8_int32={0,0,0,0,0,0,0,0},

v4_int64={0,0,0,0},

v2_int128={0,0}

}

• We have SSE, AVX, AVX2

instruction sets (don’t have

AVX-512)

• 16 “YMM” registers; each

256 bits

• (Older processors may only

have 128 bit “XMM”

registers.)

• Need to include #include

<immintrin.h> and

compile with -mavx2

74

SIMD Examples

What is SIMD good for?

• Lots of identical operations on a set of elements; these

operations are costly

• Elements are in nicely-sized chunks

• Can always used specialized code to handle other cases

75

Example 1: Adding two arrays

• Let’s add two arrays of 8 32-bit integers with one SIMD

operation

• simdtests.c

76

Assembly examples

77

Example 2: Adding single value to array

• Let’s add one value (10) to an array.

• Do we need to declare a new array to do this? Or can we

make a vector of 10s manually?

78

Speed comparison

• How much time does SIMD add (in total in our

implementation) take compared to normal add?

• It’s a bit faster

79

Example 3: Searching for Particular Value in Array

• Can do vector comparisons, but get a 256 bit vector out

• Need a way to make that vector into something useful for us.

Let’s look at the code.

• int mm256 movemask epi8(mm256 arg): returns a 32 bit

int where the ith bit of the int is the first bit in the ith byte

of the argument arg

80

Optimization comparison?

• What happens when we change to O3?

• Everything gets faster!

• In previous tests: for adding, normally suddenly outpaces

SIMD; finding the 0 element doesn’t

• Guesses as to why? ...Let’s take a look at the assembly

• gcc is vectorizing the operations by itself and doing it very

slightly better

81

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

• SIMD instructions may be a little slower on a per-operation

basis (folklore is a factor of ≈ 2 even for the operation itself,

but it seems modern implementations are much better)

• Cost to gather items in new location

• SIMD is not always faster

How much can we save using SIMD? Let’s say we’re using 256 bit

registers, and operating on 32 bit data.

• Factor of 256/32 = 8 at absolute best

• Realistically is going to be quite a bit lower in practice

82

Tradeoffs

• Bear in mind Amdahl’s law when considering SIMD

• Only worth using on the most costly operations, and only

when they work very well with SIMD

83

One Question

• What’s a problem we’ve seen this semester that is particularly
suited for SIMD speedup?

• Hint: I’m not referring to any of the assignment problems

• Matrix multiplication: lots of time doing multiplications on

successive matrix elements

• (SIMD works for some other problems too; I just wanted to

highlight this as one of the classic examples.)

84

Compiler?

• A lot of the examples we saw were super simple

• Can the compiler use these operations automatically?

• As we just saw: yes it can

• --ftree-vectorize

• --ftree-loop-vectorize (turned on with O3)

• Lots of extra option to tune gcc parameters for how it

vectorizes

• But, as always, only is going to work in “obvious” situations.

85

Automatic Vectorization Example

We can see the paddd SIMD in-

struction (on xmm1 and xmm0)

when compiling with -O3.

86

	Mini-Midterm 1 review
	Finding Similar Items
	Strategies for Similarity Search
	Locality-Sensitive Hashing
	Similarity
	Jaccard Similarity
	MinHash
	Analysis of Basic MinHash
	Concatenations and Repetitions
	Practical MinHash Considerations
	Back to SIMD
	SIMD Examples
	SIMD Discussion

