
Lecture 11: Code Review and SIMD

Instructions

Sam McCauley

October 21, 2021

Williams College

Admin

• Still working on grading

• Code/slides from today posted after class

• Questions?

1

Assignment 2 Optimizations

Assignment 2

• Lots of cool ideas!

• Some seem very nice but don’t speed things up much.

2

Assignment 2: Some ideas that seemed to work

• Large base case

• Why is this good? (Hint: why was Hirshberg’s a good idea in

the first place?)

• 300, 2048 both used

• Both small enough that len1 * len2 fits in cache

• Iterative version!

• Recursive calls have overhead; can skip them

• To be honest this seems like it should be a lower-order term to

me

• Don’t reverse strings?

• Just doing the DP backwards might be faster(?)

3

Cool ideas that didn’t speed things up much

• Using 1 array instead of 2 when calculating the edit distance

value

• Getting fancy with calculating the min

• Two if statements seems fastest

• I think: compiler is really good at optimizing that.

• Easiest way of passing around solution seemed to be

continuously appending each piece as it’s found

• Idea: the way the recursive calls work, the solution for the

second half is always after the solution for the first half

4

Code from best last year (calculating costs)

5

Code from best last year (iterative Hirschberg’s)

6

A note on memory usage

• Efficient memory usage depends on reusing memory

• (Like the space-efficient ED DP just reused two arrays)

• If using malloc/free to reuse space: need to be careful how

you free!

• Making Hirshberg’s space-efficient was not meant to be a

gotcha question. I’m going to go back and make sure my

comments are correct and give back some points.

• Let’s go over how this works together.

7

Hirshberg’s

hirshbergs(char* userSolution, char* str1, int len1,

char* str2, int len2){

char* solArray = malloc(len1);

hirshbergs(solArray, str1, len1/2, str2, minItem);

hirshbergs(solArray, str1 + len1/2, len1 - len1/2,

str2 + minItem, len2 - minItem);

strcat(userSolution, solArray);

free(solArray);

}

How much space does this solution require?

Answer: space allocated over whole function, plus max(space used

during recursive calls but freed by the end), plus sum(space used

during recursive calls and not freed)

8

Hirshberg’s

hirshbergs(char* userSolution, char* str1, int len1,

char* str2, int len2){

char* solArray = malloc(len1 + len2);

hirshbergs(solArray, str1, len1/2, str2, minItem);

hirshbergs(solArray, str1 + len1/2, len1 - len1/2,

str2 + minItem, len2 - minItem);

strcat(userSolution, solArray);

free(solArray);

Let x , y be size of strings in recursive call.

Allocates O(x + y) space. Maximum space used (and freed) by

any recursive call is O(x/2 + y − 1). No space used and not freed

by recursive call.

Level ` of the recursion uses Ω(n − `) space. Number of levels is

log2m. Total: Ω(n log2m).
9

Hirshberg’s

hirshbergs(char* userSolution, char* str1, int len1,

char* str2, int len2){

char* solArray = malloc(len1);

hirshbergs(solArray, str1, len1/2, str2, minItem);

hirshbergs(solArray, str1 + len1/2, len1 - len1/2,

str2 + minItem, len2 - minItem);

strcat(userSolution, solArray);

free(solArray);

Allocates O(x) space. (No, this is not enough to store a solution;

this is just an example.) Maximum space used (and freed) by any

recursive call is O(x/2). No space used and not freed by recursive

call.

Level ` of the recursion uses Ω(m/2`) space. Total space: Ω(m).

10

Hirshberg’s

hirshbergs(char* userSolution, char* str1, int len1,

char* str2, int len2){

char* solArray = malloc(len1);

hirshbergs(solArray, str1, len1/2, str2, minItem);

hirshbergs(solArray, str1 + len1/2, len1 - len1/2,

str2 + minItem, len2 - minItem);

strcat(userSolution, solArray);}

Allocates O(x) space. O(x/2) space used and not freed by each

recursive call (for O(x) total)

Level ` of the recursion uses O(m) space. Total space:

O(m log2m).

11

Hirshberg’s

hirshbergs(char* tempSolution, char* str1, int len1,

char* str2, int len2){

char* solArray1, solArray2;

hirshbergs(solArray, str1, len1/2, str2, minItem);

hirshbergs(solArray2, str1 + len1/2, len1 - len1/2,

str2 + minItem, len2 - minItem);

tempSolution = malloc(strlen(solArray) +

strlen(solArray2) + 1);

tempSolution[0] = ’\0’;

strcat(tempSolution, solArray);

strcat(tempSolution, solArray2);

free(solArray1);

free(solArray2); }

Only allocate space for each solution character once. Space:

O(n + m). 12

Hirshberg’s

hirshbergs(char* userSolution, char* str1, int len1,

char* str2, int len2){

//any space allocated to find minItem is freed by

now

//base case appends to userSolution directly

hirshbergs(userSolution, str1, len1/2, str2,

minItem);

hirshbergs(userSolution, str1 + len1/2, len1 -

len1/2, str2 + minItem, len2 - minItem);

}

Space: O(n + m).

13

Assignment 2 Question Comments

Bookshelf Problem

• Idea: very similar setup to edit distance

• Need to be careful when gluing the two subproblems together

• In particular: unlike edit distance, need to be careful when
reversing the problem

• First item needs to be on first shelf—but last item doesn’t

need to be on last shelf

14

Hash Functions in Practice

What do we want out of a hash function?

Of course, we want consistency (each time we hash an item we get

the same result back). What else might we want?

• Fast

• Low space requirements (i.e. may need to store a seed; don’t

want that to be too big)

• Good collision avoidance

• Bear in mind: different hashes work on different types of

elements. We’ll focus on integers and strings (especially

strings)

15

Ideal Hash Functions (Independent, Uniform Hashing)

• Perfect collision avoidance

• But: require extremely large space usage unless universe of

possible elements is extremely small

• You did use one of these...

• For h on Assignment 3! Those values were all chosen

independently, completely at random

16

Hashing in Java

• Anyone know how Java

hashes a 64 bit Long?

• return x ∧ (x >>

32);

• Advantages of this?

Is this good for:

• In cuckoo filter: h1, h, f ?

• h1 and f : might work if

elements are fairly

well-spread (we take

mod)

• h: probably won’t work

(output too small)

• CMS? HLL?

• CMS might be OK; prob

not (same as above)

• HLL likely useless unless

elements very uniformly

spread
17

Multiply-Shift Hashing

uint64_t hash3(uint64_t value){

return (uint64_t)(value * 0x765a3cc864bd9779) >> (64 -

SHIFT);

}

• Hash from Mini-Midterm 1

• Seed is a large prime number to multiply by; can also add a

large random prime

• Advantages?

• Fast! (And easy.)

18

Multiply-Shift Hashing

uint64_t hash3(uint64_t value){

return (uint64_t)(value * 0x765a3cc864bd9779) >> (64 -

SHIFT);

}

• How good is it?
• Pretty good! For any x , y , Pr(h(x) = h(y)) = 1/n.

• But unfortunately behavior doesn’t extend to larger numbers

of elements.

• Let’s say we use this for a hash table with chaining (n items,

n chains). What is the expected number of elements we find

during a query q?

• Xi = 1 if h(xi) = h(q). Then E[Xi] = 1/n. By linearity of

expectation, total number of items is
∑n

i=1 1/n = 1.

19

Multiply-Shift Hashing

uint64_t hash3(uint64_t value){

return (uint64_t)(value * 0x765a3cc864bd9779) >> (64 -

SHIFT);

}

• How good is it?

• What is the size of the largest chain?

• Can’t say anything given the above. (If assuming ideal hashes

then we’d get O(log n)–multiply-shift hashing doesn’t

guarantee this)

• This hash is fast and good on average, but no concentration

bounds on worst-case data.

20

Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• Average performance would work! But concentration bounds

may not—the number of rows may not improve performance

as much as we’d think

• Hyperloglog?

• Would have to try but I doubt it.

21

Murmurhash

• Popular practical hash function

• Uses repeated MUltiply and Rotate operations

• Rotate is like shift, but bits that “fall off” are replaced on

other side

• Can be implemented with two shifts and an OR

• Code isn’t exactly short; 50 operations to hash a number

22

Murmurhash Code

23

Murmurhash Code

(The light grey lines skip pieces of code.)

24

Murmurhash3 Performance

• No known worst-case guarantees (not even

Pr(h(x) = h(y)) = O(1/n))

• Someday may discover: might not work well in some
circumstances (this is what happened to Murmurhash2)

• “Will this flaw cause your program to fail? Probably not -

what this means in real-world terms is that if your keys contain

repeated 4-byte values AND they differ only in those repeated

values AND the repetitions fall on a 4-byte boundary, then

your keys will collide with a probability of about 1 in 227.4

instead of 232. Due to the birthday paradox, you should have a

better than 50% chance of finding a collision in a group of

13115 bad keys instead of 65536.”

• https://sites.google.com/site/murmurhash/murmurhash2flaw

25

https://sites.google.com/site/murmurhash/murmurhash2flaw

Murmurhash3 Performance

Average of square of bucket sizes. Data is an intentionally bad

(albeit reasonable) case

From “Practical Hash Functions for Similarity Estimation and

Dimensionality Reduction” by Dahlgaard, Knudsen, Thorup

NeurIPS 2017

26

Murmurhash3 Performance in Practice

• Much more resilient than multiply-shift to more-difficult

statistical tests (beyond average case)

• Visual example: let’s say we hash “number strings”: “1”, “2”,

. . . “216553”

• (Cool experiment from https://softwareengineering.stackexchange.com/

questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed)

• (I wouldn’t normally cite stackexchange but this is really cool)

• Compare SDBM (another popular hash) with Murmurhash2);

fill in pixel if corresponding table entry is hashed to

27

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

SDBM (lots of chunks of full cells!)

28

Murmurhash2 (visually: random)

29

One last murmurhash question

• Murmurhash really just does a bunch of arbitrary multiplies

and rotates

• Is there anything special about this specific sequence, or will

any such set work pretty well?

• Answer: others might not work. Example: “SuperFastHash”

also uses multiplies and rotates

30

Hash comparison

Hash Lowercase Random UUID Numbers

============= ============= =========== ==============

Murmur 145 ns 259 ns 92 ns

6 collis 5 collis 0 collis

SDBM 148 ns 484 ns 90 ns

4 collis 6 collis 0 collis

SuperFastHash 164 ns 344 ns 118 ns

85 collis 4 collis 18742 collis

SuperFastHash has bad performance on lowercase English words,

and horrendous performance on numbers-as-strings.

(Also from https://softwareengineering.stackexchange.

com/questions/49550/

which-hashing-algorithm-is-best-for-uniqueness-and-speed)
31

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

Unease with our options

• Murmurhash seems to do well (and is fast), but has few

guarantees.

• What do we do if we’re OK with a slightly slower hash, but

we REALLY want to be sure it does well?

• Answer: cryptographic hashes! Secure even for cryptographic

applications; no known statistical weaknesses

• Examples: SHA-3, BLAKE2, many others

• Broken: MD5, SHA-1, many others

32

Modern Instructions and Intrinsics

Main idea

• Processors aren’t getting much faster

• So: modern processors comes with tools that help you do

common computations more quickly

• Let’s talk about a few of these tools specifically

• Note: need to use lab computers for access to many of these

• Most processors have some kind of equivalent tools, but I can

only guarantee for Intel

• Need the right kind of processor

33

Count leading (trailing) zeroes

unsigned int v;

unsigned int c = 32;

v &= -signed(v);

if (v) c--;

if (v & 0x0000FFFF) c -= 16;

if (v & 0x00FF00FF) c -= 8;

if (v & 0x0F0F0F0F) c -= 4;

if (v & 0x33333333) c -= 2;

if (v & 0x55555555) c -= 1;

• Count the number of

zeroes at the beginning (or

end) of a number

• Can do using a few bit

tricks

• But nowadays...single CPU

operation (usually)

34

Telling gcc to use these operations

• Intrinsics!

• Library functions built into the compiler itself (gcc in our

case)

• Usually: will use the best compiler option if it exists; will do a
very high-quality subroutine if not

• For example: their version of manually counting the trailing

zeroes will almost definitely be faster than your for loop

• (And even a version using bit tricks)

• And you don’t need to worry about debugging it!

35

Example intrinsic for counting zeroes

• int builtin ctzl (unsigned long)

• Note that you have to use a type like unsigned long (not

uint64 t)

• If you want to count leading zeroes in an int, use int

builtin ctz (unsigned int x)

• Let’s look at some code using this

36

Other intrinsics

• Lots and lots of them

• Get num 1s, get parity of num 1s, reverse the bytes in the

word, raise number to power

• Not always going to have a CPU instruction

37

Compiler making decisions for you

• Generally you need to call these manually

• (The compiler doesn’t know that you’re calculating the

number of trailing 0s; so it can’t make that substitution)

38

SIMD instructions

Intro: a touch of parallelism

• Something we’ve only touched on briefly in this class:

word-level parallelism

• Idea: we can do computations on 64 bit numbers very quickly

(say 1 clock cycle)

• If our data is much less than 64 bits, can get extra

computation done more quickly.

39

World level parallelism example

• Can you test if a string (array of chars) starts with “abcd” in
O(1) time?

• Calculate a uint64 t corresponding to the correct integer

• Cast the string pointer to a uint64 t pointer, then compare

them

• Watch for endianness!!!

40

In general...

• Words of 64 bits allow us to do lots of computations in one

(or a few) clock cycles

• Example: taking the bitwise OR of two 64 bit numbers is

basically doing 64 computations at once

• This is literally parallelism: the circuits in the chip do these

operations simultaneously

• Hard to do things like add (almost impossible to multiply):
why?

• Carries (etc.) mess us up!

• We’d have to leave ”space” between pieces of data; lots of

setup means it’s probably not worth it

41

One last fun(?) example

https://graphics.stanford.edu/~seander/bithacks.html#

ReverseByteWith64Bits 42

https://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
https://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits

Word-level paralellism

• Good part: takes advantage of how computers are built to

speed up computation

• Bad parts?

• Only works for a few operations (can’t even really add)

• Only works on really small pieces of data

43

Extending it forward

• Having fast operations on 64 bit data can speed up operations

on 1-bit or 8-bit data

• ...but often we want to operate on 32 or 64 bit data. It would

be nice if we could do the same!

• Honestly it’d be nice if we could do something better like

adding and multiplying rather than just taking OR or doing

weird string comparisons...

• This is the purpose of SIMD!

44

SIMD

• SIMD: Single Instruction Multiple Data

• A single instruction does an identical operation to multiple

pieces of data

• Specialized circuits operate on each piece of data individually

• Can do bitwise operations, adding, multiplying, some others

• Also some operations to help load and read data

• Introduced on Intel processors in 1999, but fairly significantly

expanded recently

45

Other Names

• Sometimes called “vector”

instructions

• And/or referred to using

instruction sets: SSE, AVX,

AVX2, AVX-512 (these are

extensions to x86).

46

SIMD Discussion

• Dipping our toes into parallelism

• Uniprocessor kind of parallelism

• GPU computation uses similar ideas

• Scaled up significantly (much more speedup potential)

• More restricted

47

SIMD on lab computers

(gdb) print $ymm0
$1 = {

v8_float={0,0,0,0,0,0,0,0},

v4_double={0,0,0,0},

v32_int8={0 <repeats 32

times>},

v16_int16={0 <repeats 16

times>},

v8_int32={0,0,0,0,0,0,0,0},

v4_int64={0,0,0,0},

v2_int128={0,0}

}

• We have SSE, AVX, AVX2

instruction sets (don’t have

AVX-512)

• 16 “YMM” registers; each

256 bits

• (Older processors may only

have 128 bit “XMM”

registers.)

• Need to include #include

<immintrin.h> and

compile with -mavx2

48

SIMD Examples

What is SIMD good for?

• Lots of identical operations on a set of elements; these

operations are costly

• Elements are in nicely-sized chunks

• Can always used specialized code to handle other cases

49

Example 1: Adding two arrays

• Let’s add two arrays of 8 32-bit integers with one SIMD

operation

• simdtests.c

50

Assembly examples

51

Example 2: Adding single value to array

• Let’s add one value (10) to an array.

• Do we need to declare a new array to do this?

52

Speed comparison

• How much time does SIMD add (in total in our

implementation) take compared to normal add?

• It’s a bit faster

53

Example 3: Searching for Particular Value in Array

• Can do vector comparisons, but get a 256 bit vector out

• Need a way to make that vector into something useful for us.

Let’s look at the code.

• int mm256 movemask epi8(mm256 arg): returns a 32 bit

int where the ith bit of the int is the first bit in the ith byte

of the argument arg

54

Optimization comparison?

• What happens when we change to O3?

• Everything gets faster!

• In previous tests: for adding, normally suddenly outpaces

SIMD; finding the 0 element doesn’t

• Guesses as to why? ...Let’s take a look at the assembly

• gcc is vectorizing the operations by itself and doing it very

slightly better

55

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

• SIMD instructions may be a little slower on a per-operation

basis (folklore is a factor of ≈ 2 even for the operation itself,

but it seems modern implementations are much better)

• Cost to gather items in new location

• SIMD is not always faster

How much can we save using SIMD? Let’s say we’re using 256 bit

registers, and operating on 32 bit data.

• Factor of 256/32 = 8 at absolute best

• Realistically is going to be quite a bit lower in practice

56

Tradeoffs

• Bear in mind Amdahl’s law when considering SIMD

• Only worth using on the most costly operations, and only

when they work very well with SIMD

57

One Question

• What’s a problem we’ve seen this semester that is particularly
suited for SIMD speedup?

• Hint: I’m not referring to any of the assignment problems

• Matrix multiplication: lots of time doing multiplications on

successive matrix elements

• (SIMD works for some other problems too; I just wanted to

highlight this as one of the classic examples.)

58

Compiler?

• A lot of the examples we saw were super simple

• Can the compiler use these operations automatically?

• As we just saw: yes it can

• --ftree-vectorize

• --ftree-loop-vectorize (turned on with O3)

• Lots of extra option to tune gcc parameters for how it

vectorizes

• But, as always, only is going to work in “obvious” situations.

59

Automatic Vectorization Example

We can see the paddd SIMD in-

struction (on xmm1 and xmm0)

when compiling with -O3.

60

	Assignment 2 Optimizations
	Assignment 2 Question Comments
	Hash Functions in Practice
	Modern Instructions and Intrinsics
	SIMD instructions
	SIMD Examples
	SIMD Discussion

