
Lecture 11: Streaming (Count Min Sketch

and HyperLogLog Counting)

Sam McCauley

October 21, 2021

Williams College

Admin

• Assignment 4 out already

• Catching up on grading next few days

• Monday will be all about practice. (Murmurhash and practical

hashing; Assignment 2 and Mini Midterm review; some

efficiency techniques for Assignment 5.)

• Assignment schedule through end of semester posted

• Questions?

1

Really Large Data

• Netflix sends (so far as I

can tell) about 500TB per

minute on average to its

customers

• Google’s search index is

over 100,000,000 GB

• Brazil Internet Exchange

processes 7 trillion bits

every second

2

Really Large Data

• Modern companies deal

with extremely large data

• Can’t even store all of it

sometimes!

• If is possible to store, can

be very difficult to access

particular pieces

3

A Shift in Focus (Streaming)

• Up until now: nice self-contained instances; might fit in L3

cache; might fit in RAM

• In some situations: can’t hope to do that

• Like you’re sitting next to a stream that’s constantly rushing

past

• All you can do is sample pieces as they pass by

4

Streaming Model

• You receive a “stream” of

N items one by one

• Stream is incredibly long;

you can’t store all of the

items

• Can’t move forward or

backward either; just come

in one at a time

5

Streaming Model

• Normally you’re used to getting your data all at once, with

the ability to store all of it, and access random pieces

whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of

information one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even

O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results

6

What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

7

When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic,

etc.

• Cache-efficiency! Streaming algorithms only require you to
scan the data once.

• N/B cache misses

8

Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

• Facebook uses HyperLogLog to estimate number of unique

visitors to site.

9

HyperLogLog at Facebook

“Doing this with a traditional SQL query on a data set as massive

as the ones we use at Facebook would take days and terabytes of

memory... With HLL, we can perform the same calculation in 12

hours with less than 1 MB of memory.”
10

Count-Min Sketch

Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• At any time, estimate how frequently a given item appeared

11

Example

You see the following items one by one:

12

adhesiveflawlessclosedadhesivedescribeclosedseaillustriousdescribedescribeflawlessstreetcloseddescribe

Example

• Now, answer questions of the form: how many times did some

item xi occur in the stream?

• Example: how many times did adhesive appear? How about
closed?

• (2 times and 3 times respectively)

13

Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element q ∈ U, estimate how many i exist with

xi = q?

• Today: pretty decent guess using
⌈
e
ε

⌉
dln(1/δ)e dlog2Ne bits

of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can

hash them.

14

How would you do this with what you know right now?

• Keep a hash table with all

elements

• Increment a counter each

time you see an element

• O(N) space, O(1) time per

query

• Pretty efficient! But we

want way way less space.

15

Sketching: A first attempt

• Randomly sampling:

• Keep N/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

16

Sketching: A first attempt

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

• So, if we wrote an item

down w times, we can

estimate that it probably

occurred 100w times in the

stream.

17

Sketching: A first attempt

What are some downsides to this

approach?

• It’s pretty loose. If our

counter is just one off, that

changes our guess by +100

• Could have a fairly

frequent item that we

never write down.

• Can’t guarantee much

about our estimate

18

Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of

length dlogNe
to have room

• How can we query?

19

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

20

Second attempt: hash counts

Expectation is not that great!

• Let’s say we have two

items; A appears 100 times

and B appears 900

• Query A: with probability

1− ε we get 100; with

probability ε we get 1000

21

What do we really want?

• To guarantee a high-quality answer, we want to say that the
solution is likely to be close to correct.

• We want concentration bounds!

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

22

Repetitions

• Rather than having one hash table A, let’s have a

two-dimensional hash table T

• T has dln(1/δ)e rows

We’ll come

back to δ later.

• Each row consists of de/εe slots

The e is im-

portant for

the analysis.

• Different hash function for each row

23

Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:

• Increment T [j][hj(xi)]

We now have dln(1/δ)e counters for each item. How can we

query?

24

Queries

Each entry is an overestimate.

• Find minj T [j][hj(xi)].

25

Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells

of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : increment T [j][hj(x)] for all

j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]

26

Example Insert

01 0 0 0 0 0 0 0

0 0 0 0 01 0 0 0

0 01 0 0 0 0 0 0

0 0 0 0 0 0 01 0

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

h3(x)
h4(x)

27

Example Insert

1 0 0 01 0 0 0 0

0 01 0 0 1 0 0 0

0 12 0 0 0 0 0 0

0 0 0 0 0 0 1 01

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)

28

Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.

29

Count-Min Sketch Guarantee: Lower bound

• On query q, let’s say the filter returns that there were oq

occurrences

So oq =

minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.

30

Count-Min Sketch Guarantee: Upper bound

• On query q, let’s say the filter returns that there were oq

occurrences; correct answer is ôq.

• We know that for any j , E[T [j][hj(q)]] ≤ ôq + εN
e

• That is to say: guess is off by εN
e in expectation

• On Assignment 4, you’ll prove that for any positive random

variable X , Pr[X ≥ eE[X] ≤ 1/e]

• So the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e

31

Count-Min Sketch Guarantee: Upper bound

• For each row j , the probability that T [j][hj(q)] ≥ ôq + εN is

at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr [minj T [j][hj(q)]] ≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with

probability (
1

e

)# rows

=

(
1

e

)dln 1/δe
≤ δ

32

Count-Min Sketch Bounds

•
⌈
e
ε

⌉ ⌈
ln 1

δ

⌉
dlog2Ne bits of space

• For any query q, if the filter returns oq and the actual number

of occurrences is ôq, then with probability 1− δ:

ôq ≤ oq ≤ ôq + εN.

33

Count-Min Sketch

• Small sketch (size based on

error rate)

• Always overestimates count

• Bound on overestimation is

based on stream length

34

Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate

num occurrences of each word within ±1500

• Often more accurate! Also: feel free to try 1000 or 10000

entries per row; it gets quite accurate

35

Hyper Log Log Counting

Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the

stream

• Common question: how many unique elements are there in

the stream?

36

The problem we’re trying to solve

• Stream of N elements

• Approximate number of

unique elements

• (Compare to CMS: stores

approximately how many

there are of each element)

37

The problem we’re trying to solve

• Stream of N elements

• Approximate number of

unique elements

• To do this exactly: need

dictionary of all elements

we’ve already seen.

• How can you count unique

elements approximately?

Challenge: don’t want to

double-count when we see

an element twice.

38

Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more

often it happens, the more distinct hashes we must be seeing!

• In particular: how many 0s does each hash end with?

39

Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two distinct hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

40

Example

You see the following hashes one by one:

How many unique items were there?

41

00100010101010010010110010111101000100011110111100000010110000110110010010011100100010101110000101101001001111010011101001100010011000000000111000110011100011111111100010110000111111010101110011000100110100111101110101001100

Example 2

You see the following hashes one by one:

How many unique items were there? Was it more or less than the

last one?

42

001000101010100100101100101111010011101001100010001000101010100100111010011000100010110010111101001011001011110100100010101010010010110010111101001000101010100100101100101111010010001010101001001011001011110100100010101010010010110010111101

Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!

43

Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at

the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But if we’re just off by 1 or 2 zeroes, that affects our answer

by a lot!

44

Improving reliability

• How do we improve the consistency of a random process?

Repeat!

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of

0s at end of any item hashed to that counter

• For CMS, we took the min. What do we do here to combine

the estimates?

• Answer: It’s complicated. (And outside the scope of the

course.)

45

HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it

M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x).

Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If

z + 1 > M[i], set M[i] = z + 1

• Make sure to add 1 to your count of the number of

zeroes

46

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1

2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.

47

Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 02 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.
48

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.
49

Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 05 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.
50

Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1.

The counter stores 5, so we keep the slot as-is.
51

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.
52

At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the

value of b for 8. (No one does HyperLogLog with 8)

53

Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in

any hash

• Size > log log(number of distinct elements) (hence the loglog

in the name)

• 8-bit counters are good enough, so long as the number of

elements in your stream is less than the number of particles in

the universe

• Note: one thing to be careful of is hash length. But 64 bit

hashes should be good enough for any reasonable application

(and 32 bits is usually fine)

54

HLL in the Assignment

• We’ll use m = 32 counters

• Bias constant is .697

55

HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not

much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these

problems

• Other known improvements as well

56

One More Cool Thing

• Facebook developed an
HLL-based algorithm to
calculate the diameter of a
graph

• In terms of “friend

jumps”, how far away are

the furthest people in the

Facebook graph?

• How far away are two

people on average?

• Usually takes O(n2) time!

• Theirs is essentially linear

time, gives extremely

accurate results

57

Let’s Look at Assignment 4

Assignment 2 Optimizations

Assignment 2

• Lots of cool ideas!

• Some seem very nice but don’t speed things up much.

58

Assignment 2: Some ideas that seemed to work

• Large base case

• Why is this good? (Hint: why was Hirshberg’s a good idea in

the first place?)

• 300, 2048 both used

• Both small enough that len1 * len2 fits in cache

• Iterative version!

• Recursive calls have overhead; can skip them

• To be honest this seems like it should be a lower-order term to

me

• Don’t reverse strings?

• Just doing the DP backwards might be faster(?)

59

Cool ideas that didn’t speed things up much

• Using 1 array instead of 2 when calculating the edit distance

value

• Getting fancy with calculating the min

• Two if statements seems fastest

• I think: compiler is really good at optimizing that.

• Easiest way of passing around solution seemed to be

continuously appending each piece as it’s found

60

Code from best last year (calculating costs)

61

Code from best last year (iterative Hirschberg’s)

62

	Count-Min Sketch
	Hyper Log Log Counting
	Let's Look at Assignment 4
	Assignment 2 Optimizations

