
Passing Pointers by Value

By Daniel Barowy, Williams College

In C, all function parameters are passed by value. People are fre-
quently confused about what this means, particularly when pointers
are involved. So what does “pass by value” mean?

Let’s look at an example:

#include <stdio.h>

void add(int *x, int *y, int *z) {
*z = *x + *y;

}

int main() {
int x = 1;
int y = 3;
int z;
add(&x, &y, &z);
return z;

}

We will walk through this program step-by-step. In the beginning,
there is nothing. Note that the arrow in the following diagram points
at the line about to be evaluated, what we call an instruction pointer.



2

When your computer first executes a function, the function preamble
runs. The preamble allocates storage for the variables in the func-
tion. Colloquially, we sometimes refer to this as “setting up the stack
frame.” If there are any function parameters, at this time, their values
are copied into the local storage allocated for them. In this example,
there aren’t any parameters.

The first line of the function assigns the value 1 to the local variable
x. What this means is that the value 1 is copied into the stack storage
reserved for x.



passing pointers by value 3

The same thing happens in the next line, except that 3 is copied into
the storage for y.

In the third line, we declare z but we don’t assign anything. In C,
nothing actually happens when we execute this line. The compiler
already allocated local storage before the function ran, in the preamble.
Although nothing happens when we run this line of code1, it does 1 To be more precise, it’s not so much

that the computer “does nothing” when
the line of code is executed; there is no
line of code after the C program has been
translated into machine language.

have to be in the program, otherwise the compiler would not have
known we wanted storage for the z variable.

On the fourth line, the add function is called. But before that hap-
pens, technically, there are four more steps. Why? Because we don’t
know what the arguments to the function are yet. They must be evalu-
ated2 so that they can be copied into add’s own stack frame. 2 There are other techniques to provide

these arguments. Evaluating arguments
before calling the function is called
eager evaluation. Another technique,
popular with functional programming
languages, is called lazy evaluation. Lazy
evaluation defers the evaluation of
parameters until the moment that they
are needed by the called function. In
other words, lazy evaluation evaluates
arguments after the function is called.
The benefit of lazy evaluation is that
if a function never actually uses an
argument, the argument never needs to
be evaluated. However, most languages
choose eager evaluation because it is
simple to implement.

First, the foo’s function preamble is run. Do you remember the pur-
pose of a preamble? If you don’t, go back and read the earlier mention
of this term. Function preambles need to be run before arguments are
evaluated. Why do you think that is?

Second, &x is evaluated. This line “gets the address of x,” and stores
the result (an address) into the first parameter of add.



4

Third, &y is evaluated and the result is stored into the second pa-
rameter of add.

Finally, &z is evaluated and the result is stored into the third param-
eter of add.

Now that all of the arguments to add are evaluated, the main sub-
routine transfers control to the add subroutine. On most computers,
this is implemented with some kind of jump instruction. The process
starts all over again, this time for the add function. As before, in the
beginning, there is nothing in add’s stack frame.

Since each argument is a pointer (they all have type int *), their
values are addresses. I draw them using arrows to make things clearer,
but you should know that technically, pointers are actually stored as
numbers. Note that x, y, and z in add aren’t just different variables
than x, y, and z, in main, the variables in add have a different type (int
* as opposed to int). Remember that variable names are just names,
and as in real life, where two different people can have the same name,
two different variables in C can have the same name. We will talk
about why, exactly, this duplication of names does not confuse C when
we discuss scope. For now, observe that names are local to a function.



passing pointers by value 5

It’s worth noting that z in add really does point to an undefined
variable z in main. Yes, C lets you do things like that.

At this point, we execute the body of the add function. There’s a lot
going on, so as we did with function parameter evaluation, let’s break
the evaluation down into steps.

At a high level, we are assigning a value to a variable. What are we
assigning? The result of an addition. But, since there are a bunch of
* symbols in here, hopefully you suspect that there’s more to it than
that.

First, we need to get the value of the right side of the assignment:

*x + *y

Well, to get the value of this expression, we need to know the value
of the left side of the addition:

*x

And to know that, we have to dereference x (that’s what *x says
in code, literally). What does it mean to dereference something? It
means that we follow the pointer stored in x and fetch the value it
points to. Now we know *x. It’s 1.

1 + *y

What do you think we do next? We need to know the right side
of the addition. *y does essentially the same thing as *x. When we
dereference y, we follow its pointer and find 2.

1 + 2

The right side of the assignment can now be evaluated since we have
all of the values. 1 + 2 = 3.

*z = 3



6

But wait... we still have a * on the left side of the assignment. That’s
because z is also a pointer. We don’t actually want to store 3 in z. That
wouldn’t make sense because 3 is an int while z is a pointer. Instead,
we want to follow the pointer stored in add’s z and store the value in
this other location. That other location happens to be z in main.

When you see a pointer on the left side of an assignment, what
happens is the following:

1. Evaluate the right hand side (we did this already). 2. Store the
value of the right hand side in the location pointed to by the left hand
side.

So what happens now is that we store 3 in z in main.
Note that this is why add can get away with returning void. add

directly manipulates memory stored in main’s stack frame. Also notice
that we did all this cool pointer stuff without any mention of malloc
(i.e., without variables having allocated storage duration). Pointers and
storage duration are different, but complementary concepts, as will
become clear in the next step.

Now that we’re at the end of the add function, add’s function epi-
logue runs. It says how to restore the stack to its state before add was
called. The storage for x, y, and z in add goes away. The storage for
each variable goes away because each was allocated with automatic
storage duration—in other words, it goes away automatically because
we did not use malloc.



passing pointers by value 7

It is worth mentioning that the dirtly little secret in most C imple-
mentations is that those values don’t really go away. The values are
technically still stored in those locations. If you are clever, you can still
even read them3. What you should not do, however, is count on those 3 And this is something that clever

hackers may do!values staying there, because the moment you call another function,
they’ll probably be overwritten.

Now that we’re back in main, we pick up where we left off and
finally return z. Ever wondered what return z actually means? It
means “copy the value stored in z into the location specified by the
calling function and then jump to the function epilogue.” So we copy
34 and move to the epilogue. 4 Where, exactly, 3 gets copied depends

on which function called main, which is
a detail I’ve omitted here.



8

Finally the program is done; main’s epilogue is run and the final
stack frame is town down.

At this point, what to do next is somebody else’s problem.


	Passing Pointers by Value

