
A Brief Overview of C

By Daniel Barowy, Williams College

If you’ve never had any exposure to C, this chapter contains most
of what you’ll need to know for this course. If you have had exposure
to C, feel free to skim, but keep in mind that this chapter goes a bit
deeper than most introductions to C.

Let’s look at a very simple C program in source code form.

#include <stdio.h>

int main() {
printf("Hello world!\n");
return 0;

}

Type this program into an editor and save it with the name helloworld.c.
I recommend typing the program instead of copying-and-pasting it
because retyping it will force you to notice important details about the
program.

Hopefully it’s not too much of a stretch for you to figure out what
this program does. We will look at this program line-by-line to un-
derstand what its parts are, but first, let’s understand how to run this
program.

The C Compiler

A computer cannot understand a C program in source code form.
Source code is for humans to read and understand. In order for a
computer to run a program in source code form, it must be translated
into an equivalent, machine-readable form called an executable binary.
An executable binary consists of machine code that looks a bit like this:

01111111 01000101 01001100 01000110 00000010 00000001

2

00000001 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000010 00000000
00111110 00000000 00000001 00000000 00000000 00000000
00110000 00000100 01000000 00000000 00000000 00000000
00000000 00000000 01000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00011000 00011010
...

Perhaps not surprisingly, we often call programs in machine-
readable form “binaries” for short. The program that performs the
translation from source code form to executable binary form is called
a compiler. The C compiler translates C source code programs to ma-
chine code.

Note that there is an “human-readable” form of machine code
called assembly language intendend to makes binary executables a little
easier for humans to read, although reading them in this form is a dif-
ficult skill to attain. Each machine instruction is given a name, called
an instruction mnemonic, and these mnemonics are printed instead of
the binary. There is (generally) a one-to-one correspondence between
assembly language mnemonics and machine instructions.

To give you a taste for what assembly looks like, here is helloworld
compiled to x86 (Intel) assembly language. You do not need to under-
stand assembly in this class!

.text

.file "helloworld.c"

.globl main

.align 16, 0x90

.type main,@function
main: # @main
.cfi_startproc
BB#0:
pushq %rbp
.Ltmp0:
.cfi_def_cfa_offset 16
.Ltmp1:
.cfi_offset %rbp, -16
movq %rsp, %rbp
.Ltmp2:
.cfi_def_cfa_register %rbp
subq $32, %rsp
movabsq $.L.str, %rax
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)

a brief overview of c 3

movq %rax, %rdi
movb $0, %al
callq printf
xorl %ecx, %ecx
movl %eax, -20(%rbp) # 4-byte Spill
movl %ecx, %eax
addq $32, %rsp
popq %rbp
retq
.Lfunc_end0:
.size main, .Lfunc_end0-main
.cfi_endproc

.type .L.str,@object # @.str

.section .rodata.str1.1,"aMS",@progbits,1

.L.str:

.asciz "Hello world!\n"

.size .L.str, 14

.ident "clang version 3.8.0-2ubuntu4 (tags/RELEASE_380/final)"

.section ".note.GNU-stack","",@progbits

History

Now that I’ve defined a few terms for you, let’s briefly discuss some
C history so that you can understand the importance of the language.
Despite being more than 40 years old, C is still widely used.

C is a general-purpose programming language originally designed
between 1969 and 1973 at Bell Labs by Dennis Ritchie. Its purpose
was to make it easier to implement and maintain programs across
a variety of computer architectures. In the early days of computing,
portability, or the ability to easily move a program from one computer
platform to another, was difficult. Often, each brand of computer had
its own unique set of machine instructions and programming tools.
Porting a program from one computer to another often meant that the
entire program had to be rewritten. C was one of the first languages
designed so that, as long as each target platform had a standard C
compiler, a programmer needed to do to little more than run the C
compiler in order to “port” their program.

(NOTE: Portability was more of a problem in the early days of com-

4

puting when there were many different competing and incompatible
computing platforms. Our modern computer ecosystem is dominated
by two platforms, x86 and ARM. Furthermore, portable languages
are now the norm, so most programmers don’t think much about this
problem anymore.)

C is also an imperative language, meaning that in order to instruct a
computer to do something, you need to tell it exactly what to do, step
by step. As you will see this semester, many interesting programming
languages are not imperative. C is also fairly “low-level,”1; meaning 1 Ritchie considered C a “high-level”

language, because by the standards of
the time, it was! C looks nothing like
machine code, and many old-timers
considered C far too abstract to be
able to produce fast code. Nowadays,
writing low-level code is discouraged,
because most high-performance lan-
guage implementations are capable
of producing more efficient code than
assembly hand-written by even very
good programmers. We will discuss this
level of abstraction concept more during
this semester.

that a single instruction in a C program often closely corresponds with
a single instruction in computer hardware. Consequently, C allows
a degree of control over computer hardware that is not attainable by
many other languages. Thus C is the language of choice for programs
where low-level hardware control is essential, like operating systems.
For example, Linux is written in C. In fact, C was explicitly designed
with operating systems in mind. The first widely-used version of the
UNIX operating system was written in C by Ritchie and his collabora-
tor, Ken Thompson.

The success of C is partly because it gives programmers a sim-
plified “model” of a computer, but not such a simple model that it
is difficult to write high-performance code. In fact, as you will see,
in C, memory is a resource that must be manually managed by the
programmer. If you come from a Java or Python background, this
idea will be foreign to you: neither language allows you to manually
manage the computer’s memory. Nonetheless, the rules for manag-
ing memory yourself are fairly simple, and with this feature you can
write very fast code, control hardware directly, and interact with other
low-level parts of your operating system that would not be possible
otherwise.

A typographic convention for this course

Before we talk about compiling helloworld.c, take note of a conven-
tion that I will use throughout this course. When you see a line that
looks like,

$ [whatever]

this indicates a command that you should run using the command
line interface (CLI) on one of our lab machines. You can access the
CLI by running the Terminal program on one of our lab machines.
The $ denotes the command-line prompt and should not be typed. Be

a brief overview of c 5

aware that some lab machines use a different symbol than $ for the
command-line prompt, but the idea is the same.

Compiling using clang

For this class, we will be using the clang compiler. If you already
know some C, you may be familiar with the alternative gcc compiler.
We will be using clang instead because it supports more modern C
features and it provides much better error messages than gcc.

To compile helloworld.c, type:

$ clang helloworld.c

If you made no mistakes when you typed in your program, clang
will print nothing. This silent-on-success convention is a little counter-
intuitive if you are new to UNIX, but you should remember that most
UNIX programs work this way.

If clang prints an error message, go back and look carefully at your
program to find your mistake and try again.

Once you have successfully compiled your program, you should see
a file called a.out in your working directory. The following command
lists the current directory and shows that I now have an a.out file.

$ ls -l
total 16
-rwxrwxr-x 1 dbarowy dbarowy 8664 Sep 2 13:08 a.out*
-rw-rw-r-- 1 dbarowy dbarowy 97 Sep 2 13:06 helloworld.c

Running the program

Note that all the C compiler does is convert the program into a binary
executable. It does not actually run the program. To run the program,
type

$./a.out

You should be rewarded with the text Hello world! printed on
screen.

6

Don’t speak gibberish

Imagine you’re traveling to Greece. Since they speak Greek there, not
English, you bring a little English-to-Greek phrase book with you.
During your daily interactions with people, like asking where you
might find a good restaurant, where to rent a bicycle, what to do in the
evenings, etc., you look up the phrase you want to use in your book,
and you speak that phrase to a person. When they respond, you look
up their response in the book and translate it back to English.

What you do not do is randomly choose phrases from the book and
just say them. Why? Because doing so makes no sense. When you ask
a Greek shopkeeper “Οι άχρωμες πράσινες ιδέες ύπνο θυμωμένα;”
(“Do colorless green ideas sleep furiously?”) they will, in all likeli-
hood, politely shoo you out the door.

Writing a program is exactly like using a phrase book. The purpose
of a program is to communicate what you want to a computer. Right
now, you probably need to look up what you want to say using the C
language documentation. Eventually, you will remember phrases and
you won’t have to look them up.

Do not copy and paste code snippets from the internet (e.g., Stack
Overflow) without understanding them. For all you know, you are
speaking gibberish to the computer, and in all likelihood, it will not
do what you want. Stack Overflow is a wonderful resource—for learn-
ing how to solve problems. But to really solve a problem, you must
understand the solution.

Let’s understand the program we just typed in.

Library include statements

The first line,

#include <stdio.h>

tells the C compiler to use the stdio library.
What does this mean? Well, it turns out that C is actually quite a

small and simple language. When people think about C programs
they’ve written in the past, most of what they’ve done is use code that
comes from C code libraries. Printing, as it turns out, is not a built-in
feature of the C language! So in order to print things, we import the
stdio library, which provides functionality for “standard input and
output” (i.e., “standard I/O”, often shortened to stdio).

We will talk about how the C compiler links imported library code to
your program in a future lesson.

a brief overview of c 7

Function definitions

The next line,

int main() {

denotes the start of a function definition, and that definition continues
until we reach the } character at the end of the program.

A function, or more precisely in C, a program subroutine, is a se-
quence of instructions that are packaged up into a unit. We package
code in this manner so that we can reuse sequences of instructions
without having to type them over and over again. Instead, we call the
function, which has the same effect. Also, since we often want to run
the same code with small variations, function definitions allow us
to parameterize the function so that we can supply the varying values
when we call the function.

This function, which is called main, has no parameters. It is im-
portant to know that the main function in your program is special.
The reason is that when your computer attempts to run your com-
piled program, it needs to know where to begin running. That starting
point, which is called an entry point, is always a function called main2 2 This is actually a lie. The actual entry

point is called _start, but the _start
function is generated by the compiler
and contains initialization code for the
C language itself. From a programmer’s
standpoint, main really is the entry
point.

in the C language.
Our main function also returns a value of type int. How do we

know? The text to the left of the function name (in this case, main),
denotes the return type. This means that the very last thing a function
must do is return a value of the given type.

Finally, the “inside” of the function, what we call a function body, is
the most important part. The function body is a sequence of instruc-
tions to perform. The key functionality of our helloworld.c program
is located in the main function’s body.

Function calls

A function call tells the C compiler that you would like to use a func-
tion definition. If you define and never call a function, that function’s
body is never run.

A function call is performed by typing the name of the function fol-
lowed by supplying values for its parameters in parenthesis. Suppose
we have the following function definition:

int add(int x, int y) {
return x + y;

}

We call the add function in our program with code that looks like:

add(3,4);

8

which will return the int value 7.
“But wait,” you protest, “we never call main in helloworld.c!”
Indeed, we never call main. As I noted before, main is a special

function. When you run a program, the entry point is located and
run, and in C, the entry point is the main function. Who calls main,
then? The operating system calls main (or more precisely, the program
loader).

Program statements

In C, a “line of code” must end in a semicolon. This construct is called
a program statement. This is not unlike ending English sentences with
periods– it tells you where the “end” of a sentence is, which helps
with understanding. If you’ve even encountered a “run on sentence”
in English, you know that sentences without periods are hard to un-
derstand. For the same reason, C statements must end in semicolons.

Note that other programming languages don’t always use this
semicolon convention. Instead, they have other ways to denote the end
of a statement. Python, for example, is sensitive to indentation. We
will see some other examples as the semester progresses.

Why don’t some C constructs end in semicolons, like #include
and function definitions? Because the C compiler knows when these
constructs end without needing a semicolon. Admittedly, the rules
seem a bit arbitrary to newcomers, but you’ll eventually get the hang
of them.

Printing

Now we get to the most important part of our program:

printf("Hello world!\n");

The printf function prints things to the screen. In this case, it
prints “Hello world!” followed by a command, \n, that tells the com-
puter to print a new line.

Recall that earlier, I stated that printing was not a feature of the C
language, and here we are, printing. The reason we are able to print is
because, earlier in the program, we told the C compiler to import the
stdio library, which includes the printf function.

Note that this is an example of a function call. We supply the name
of the function, printf, along with its parameter, in this case, the
value "Hello world!\n".

You might be wondering why the function is called printf instead
of just print. The reason is that printf is short for “print formatted.”

a brief overview of c 9

Section Description
1 General commands
2 System calls
3 Library functions, particularly the C Standard Library
4 Special files
5 File formats
6 Games
7 Miscellaneous
8 System administration

Table 1: Sections of a man page.

On-line help

This is a good time to mention that every UNIX-like computer, in-
cluding the Linux and Mac machines we use in our labs come with a
built-in help system called “manual pages,” or “man pages” for short.
Libraries like stdio are not a part of the C language. Technically they
are a part of a separate collection of code called the “C Standard Li-
brary” and are supplied with the operating system. Practically speaking,
no C compiler is shipped out to users without some kind of standard
C library, because little can be achieved with such a language. Thus
you can almost always count on the C standard library being available,
with documentation, on a modern computer.

For example, on a lab machine, you can type the following into
your CLI:

$ man 3 printf

and you will be rewarded with documentation for printf. What does
the 3 mean? You need to tell man which “section” of the manual to
search for printf. The sections are shown in table 1.

Since printf is a part of the C Standard Library, we type man 3
printf to find it. If you just type man printf, the help system will
find a different printf command which is not the one you want.

Return value

Finally, we get to the penultimate line in the program,

return 0;

The return keyword instructs the function to return the following
value. Since our function definition states that the return value of main
is an int, the value we return must be an int or the compiler will
print a compiler error.3 3 Note that compiler errors are a feature

of a language, and even though they
may seem annoying at times, they are
very useful. Read them! They almost
always correctly tell you what is wrong
with your program. We will talk more
about compiler errors—especially
type errors—in more detail later in the
semester.

If you’re like me, you might be wondering, “OK, I understand that
we have to return an int because the main function definition says

10

that we will. But why do we have to return an int? What does this int
mean?”

Great question. The meaning of the return value of the main func-
tion is a signal to the operating system that the program either ran
fine, or that it terminated with an error. Conventionally, the return
value 0 means “returned without error.” Any other number means
that the program failed. Different operating systems have different
meanings for non-zero return values.

The reason we use these return values for main is due to the de-
sign of the UNIX operating system: in UNIX we are encouraged to
construct complex programs out of less complex programs. If another
program utilizes your helloworld program, it is important for that
other program to know whether helloworld ran correctly or failed so
that it can take the right action. We will not discuss the UNIX design
much during this course, but if you are interested, I highly recom-
mend taking a course in operating systems (or read “The Art of Unix
Programming” by Eric S. Raymond, ISBN 0131429019). Understand-
ing the design of UNIX will make you a better programmer.

One small detail: if you omit the return statement, specifically for
the main function, the compiler will not complain, and will silently
return 0.

Compiler warnings

Earlier, we stated that you could compile a C program by typing

$ clang helloworld.c

and that, if the program contained no errors, clang would print
nothing. It turns out that programs often have tiny flaws that are not
crucial to the functioning of the program but which you really should
consider fixing anyway. clang is capable of warning you when your
code compiles but may not compile as you intend. To show warnings,
add the -Wall flag:

$ clang -Wall helloworld.c

Now the compiler will print anything potentially problematic.
-Wall, by the way, stands for “all warnings.” For more information on
warnings, type man 1 clang into your CLI.

**In this class, your code must compile without warnings. If you
turn in code that causes clang to print warnings when -Wall is used
you will lose points on your homework grade!**

a brief overview of c 11

Named compiler output

If clang is able to successfully compile your program, it will print
nothing (in fact, it secretly returns 0 behind the scenes) and produce
an executable binary called a.out on the side. With the -o option,
clang lets you name this binary. For example,

$ clang -Wall -o helloworld helloworld.c

will run clang with warnings and will produce an executable bi-
nary called helloworld instead of a.out. This binary can be run with

$./helloworld

Makefiles

Typing commands like clang -Wall -o helloworld helloworld.c
over and over again gets pretty tedious. And as your programs grow
in complexity, you will need to type more complicated commands.
There is a simple facility that is frequently (in fact, almost always)
paired with a C language program: make. In this class, your C pro-
grams must always be accompanied by a makefile.

A makefile tells your C compiler how to build a program. Let’s look
at a simple example.

In your editor, create a file in the same directory as your helloworld.c
program and call it Makefile. Type the following into the file:

helloworld: helloworld.c
clang -Wall -o helloworld helloworld.c

Note that the space on the second line, before clang, must be a real
tab character, not a bunch of space characters. If you are using emacs and
you’ve named the file “Makefile”, emacs will insert a real tab even if
you’ve configured it to insert spaces instead of tabs. In other words,
emacs does the right thing. Makefiles that do not have tabs will not
run properly.

Now, on your command line, run

$ make helloworld

Assuming that your program has no errors, this will run clang and
produce a new helloworld binary. Maybe.

12

Wait... “maybe”?

Make is a fairly smart utility. One of the things it does is to check
whether you actually need to run clang again. If the helloworld
binary is newer (i.e., has a more recently modification date) than
helloworld.c, then by default, make will not bother running the
command again.

Since computers are relatively fast, you might be wondering why
make bothers to do this. For our short helloworld.c program, the
time saved makes almost no difference. The real benefit of make starts
to become apparent when we add multiple rules.

make rule

As it stands, our Makefile currently only has a single rule, called
helloworld. A rule is composed of a target, a dependency list, and a
command list. Rules have the following syntax:

<target name>: <target dependency 1> ... <target dependency m>
<command 1>
...
<command n>

The target is the name of the rule. Generally speaking, your target
name should be the same as the name of the file that you want to
produce. In our helloworld target, we have a single clang command
that builds a helloworld binary.

The target name is how make knows to look at the modification
date for the helloworld file. But how does it know what to compare
helloworld against? This is where the target dependencies come in.

make dependencies

Target dependencies tell make which file or files your target depends
on. In our case, we want to update the helloworld binary when the
helloworld.c source file changes. helloworld.c is our sole depen-
dency. You can list as many dependencies as you want, separated by
spaces.

You may specify other make targets as dependencies. To demon-
strate, let’s change how we compile helloworld.c. Instead of con-
verting the C program to an executable binary all at once, let’s instead
convert the C program to assembly language, and then convert the as-
sembly language to a binary in a separate step. To be clear, compiling
helloworld.c in two steps is not strictly necessary; I am showing this
as two steps just to make it clear how make dependencies work.

Rewrite your Makefile as:

a brief overview of c 13

helloworld: helloworld.s
clang -o helloworld helloworld.s

helloworld.s: helloworld.c
clang -Wall -S helloworld.c

Now, if you type make helloworld, make will produce an assembly
language file called helloworld.s before producing the helloworld
binary. If you look at the helloworld.s file in a text editor, you should
see something that looks very much like the assembly program shown
earlier in this document.

How does make know that it should produce a helloworld.s be-
fore producing a helloworld file? Because you told it so: the depen-
dency for helloworld is helloworld.s.

The make algorithm

When you run make helloworld, make checks that helloworld.s ex-
ists and is older than helloworld. If not, it moves on to the helloworld.s
target, otherwise, it stops.

make now checks that helloworld.c exists and is older than helloworld.s.
If not, it looks for a rule called helloworld.c. Since the file helloworld.c
always exists, make will only run the command in the helloworld.s
target when helloworld.c is newer than helloworld.s. After run-
ning the command, the helloworld.s file exists.

Now make returns to the helloworld target, finally producing the
helloworld binary.

make dependencies are a DAG

An asute student (especially if you’ve taken CSCI 136!) should recog-
nize that the chain of dependencies in a makefile can be represented
as a graph. Each make target is a vertex in a graph, and each depen-
dency is an edge from the target vertex to the dependency, which
is also a vertex. In fact, this graph must be a directed acyclic graph
(DAG), otherwise make will not work properly.

Figure 1 shows the DAG for our helloworld makefile thus far. Figure 1: A directed acyclic graph
representing helloworld dependencies.Thinking about a makefile as a graph is very useful for under-

standing what make will do. If you are confused about a makefile, I
strongly recommend drawing the graph out on paper.

Default make target

With our current Makefile, we don’t actually have to type make
helloworld. In fact, we can just type

14

$ make

and it will also work. Why?
If you call make without a target name, it will run the first target in

the file. The first target is called the default target. The default target
should generally be the file that you want to produce most often, i.e.,
the executable binary.

In fact, you can call any make target on the command line. If you
type:

$ make helloworld.s

Then you are asking make to produce only the helloworld.s file
(and any other dependencies that may need to be produced to create
helloworld.s).

“Cleaning”

It is often useful to “clean up” the files created during development
so that only the essential files remain. In our case, the only essential
file is helloworld.c. We can generate helloworld.s and helloworld
anytime we want by running make.

If you use emacs, you probably also produce many files like helloworld.s as
a side-effect. These files are temporary save files produced by emacs
in case your computer crashes while you are working on a file. They
allow you to restore your work in case you forgot to save. This is def-
initely useful, but I also like to delete these files when I clean up, be-
cause they add a lot of clutter to my source code folder.

Let’s add a clean target to our makefile. Put the following at the
bottom:

clean:
rm -f helloworld helloworld.s *~

When we run make clean, make will delete those files. We supply
the -f flag with rm in case files don’t exist. If, for example, helloworld
exists but helloworld.s does not, technically rm will notice that
helloworld.s is missing and terminate with an error. -f, which
means “force deletion”, tells rm to ignore those missing files.

One last thing: notice that our clean target does not have any de-
pendencies. When make encounters a no-dependency target, it will
simply run the commands listed in the rule without doing any depen-
dency modification-time checks.

all rule

Sometimes a makefile is a collection of rules for separate programs
(e.g., a homework assignment consisting of solutions to multiple

a brief overview of c 15

problems). It is often convenient to create a single rule that builds
all of the targets. Conventially, this rule is called all and has only
dependencies, no commands. For example,

all: problem1 problem2 problem3

problem1: problem1.c
clang -Wall -o problem1 problem1.c

problem2: problem2.c
clang -Wall -o problem2 problem2.c

problem3: problem3.c
clang -Wall -o problem3 problem3.c

Notice that in the sample makefile above, all is the first rule, so

$ make all

and

$ make

do the same thing.

More C

Let’s explore some more features of the C language. Since you likely
have been exposed to Java before, C will look visually similar to you.
In fact, Java was explicitly designed to resemble C to encourage C
programmers to try it out. This was a very successful tactic, and it is
one of the reasons why Java is more popular than C now.

Keep in mind, however, that C is not Java. In fact, Java is much
more sophisticated than C, and Java does a lot more work behind the
scenes to ensure that your program does what you want. C lacks many
of these safeguards.

Comments

In C, there are two kinds of comments: single-line comments and
multi-line comments. They work exactly the same way as their Java
equivalents.

// This is a single-line comment.

16

Primitive Description
char The smallest addressable unit of the machine that can contain an element of the ASCII character set.
int A signed integer.
float An IEEE 754 single-precision binary floating point number.
double An IEEE 754 double-precision binary floating point number.

Table 2: C primitive data types.

/* This is
a
multi-
line
comment. */

Variables

As with Java, C has variables. The statement,

int i = 0;

does essentially the same thing in Java as it does in C. First, storage
for the variable i, which is of type int, is allocated. Then the integer
value 0 is assigned to that location. We will talk about allocation and
assignment in much more detail when we talk about how C deals with
computer memory. For now, remember that using a variable properly
always consists of two steps:

1. Allocation is the mechanism by which a C program obtains memory.

2. Assignment is the mechanism by which a C program stores a value
in a memory location.

In C, you must always think about where a variable is allocated. In
the code snippet above, i is what we call an automatic variable, because
we did not explictly say anything about the storage duration for i. For
now, keep in mind that, if you don’t explicitly ask C to change the kind
of storage, a variable’s storage duration is “automatic.”

I am intentionally leaving some of the terms here undefined be-
cause memory management in C is complex topic. We will discuss
these terms in detail when we cover memory management in C.

Primitive data types

C has a small set of data types that are referred to as primitive. Prim-
itive data types are data types that are defined by the language–you
cannot modify them. Furthermore, in C, primitive data types often

a brief overview of c 17

Operator Description Example Evaluates To
+ Addition 2 + 2 4
- Subtraction 2 - 2 0
* Multiplication 2 * 2 4
/ Division 2 / 2 1
% Modulus 2 % 2 0

Table 3: C infix operators.

correspond closely with the facilities afforded specific hardware in-
structions. The primitives available in C are shown in Table 2.

Many of these primitives may also be modified using keywords like
signed or short to specify different number ranges or sizes.

Quite surprisingly, C traditionally does not have a built-in boolean
data type! In C, the int value 0 is used to represent false and any
other integer value represents true. This is often confusing to people
who come to C from more featureful languages, so for this class, I
will allow you to use a modern version of C. In C99 and later, the C
Standard Library has a boolean data type that you can use. You will
need to #include <stdbool.h> to use it.

#include <stdbool.h>

int main() {
bool b = true;

}

clang uses C11 by default, so stdbool is available by default (yes,
confusingly C11 is newer than C99).

Note that there is no mention here about other types you often see
in Java like String and other complex data types like classes. C has no
strings and no classes. It does however, have two facilities for building
complex data types.

Arithmetic expressions

Like Java, C has a variety of infix arithmetic operators, as shown in
table 3.

The rules for these operators are much like the rules in Java. For ex-
ample, 3 / 4 equals 0 but 3 / 4.0 equals 0.75. If you don’t remem-
ber why, this would be a good time to brush up on your knowledge of
integer and floating point data types.

C also has unary operators, as shown in table 4.

Structures

Complex data types (i.e., data types that allow a variable to store more
than one primitive value) in C are achieved using a feature called a

18

Operator Description Example Evaluates To
+ Unary plus +2 2
- Negation -2 -2
++ Preincrement i = 0; ++i; Returns 1, sets i to 1
-- Predecrement i = 0; --i; Returns -1, sets i to -1
++ Postincrement i = 0; i++; Returns 0, sets i to 1
-- Postdecrement i = 0; i--; Returns 0, sets i to -1

Table 4: C unary operators.

structure, or a struct for short.
A struct vaguely resembles a class in Java. For example,

struct point {
int x;
int y;
};

The above struct definition defines a new type called point that
stores two integers, one called x and another called y. Note that C
requires you to put a semicolon (;) after the struct definition (I
always forget this!).

To use our point, we first need to allocate storage in a variable:

struct point p;

Again, since we did not say anything “special” about the storage, p
is an automatic variable.

To assign values to p, we use the field access operator, ., as follows:

p.x = 3;
p.y = 4;

Note that, unlike Java classes, a struct does not have methods
or a constructor. It also does not have field access modifiers such as
public, private, and so on. It is simply a container for data.

Arrays

Arrays in C are similar to Java arrays in that they are a fixed-size data
structure that stores a sequence of elements, and they allow random-
access reads and writes.

Here’s some code for allocating an array, assigning values to it, and
then reading and printing them back out.

/* Allocate, assign, read an array in C */
int arr[10];

a brief overview of c 19

for(int i = 0; i < 10; i++) {
arr[i] = i * 2; // store the value of i * 2 in the array at index i

}

for(int i = 0; i < 10; i++) {
printf("%d\n", arr[i]); // print the values out

}

Observe that the syntax for allocating an array in C is also a little
different than in Java.

Unfortunately, because C is not object-oriented like Java, working
with arrays is a tad trickier in some cases. Remember that C does not
have classes, so types do not have members. In Java, you can “ask” an
array how long it is by doing

/* Allocate array and get length in Java */
int[] arr = new int[10];
int len = arr.length;
System.out.println(len);

length here is a member function on the Java array data type. In C,
it is not simple to perform this operation because there are no member
functions. Instead, you need to either 1) remember the length you
used when you allocated the array, or 2) use the C sizeof operator.

Let’s look at the sizeof operator. The sizeof operator gives the
amount of storage, in bytes, required to store a value for a variable of
a given type. So the output of sizeof for an int array of size 10 is,
surprisingly:

/* Using sizeof in C */
int arr[10];
printf("\%lu\n", sizeof(arr)); // prints '40'

Why? Because an int is 4 bytes (on my machine). Storing 10 ints,
one after the other, takes up 10*4 bytes = 40 bytes.

This means that if we want to find out the number of elements in an
array, we need to do a little work:

/* Allocate array and get length in C */
int arr[10];
int len = sizeof(arr) / sizeof(int); // 40 / 4 = 10
printf("%lu\n", len);

Of course, we could have just saved the value 10 from when we
allocated the array.

20

Strings

C does not have a string data type. You might be wondering, then,
how on earth people write programs in C that have anything to do
with text.

In C, we use arrays to represent strings. In most other languages,
strings are indeed represented using array “under the hood,” so this
isn’t dramatically different from the computer’s standpoint. Be aware
that the language is completely unaware of strings– from the com-
piler’s perspective, they’re just arrays. Conventionally, however, what
has become known as the “C string” convention requires you to follow
two rules:

1. A C string is an array of characters. 1. Every C string must be
NULL-terminated.

What does this mean? Think of an array:

The C string “awesome” is represented as

Notice that the array must be big enough to store the NULL charac-
ter,

0, at the end. Without a terminating null character, a chararacter array is
NOT a C string!

The C Standard library comes with a set of functions that make
working with C strings a little less cumbersome. Be aware that if your
strings are not NULL-terminated, most of these functions will misbe-
have.4 You can use the C string functions with 4 In fact, C string bugs are a major

source of security vulnerabilities in
software written in C. You should
never use the strcpy, strcat, and gets
functions. Most modern C compilers
will warn you to consider an alternative
if you do.

#include <string.h>

Remember that anything you do with strings in C must use these

a brief overview of c 21

functions. For example, the following expressions will probably not
do what you want:

char s1[8] = "awesome";
char s2[8] = "awesome";

bool b = s1 == s2; // always false
s2 = "not awesome?"; // cannot assign to s2; does not compile
s1 = s1 + "ish"; // + not defined on arrays; does not compile

Let’s look at a simple program that reads in your name and birth-
day, if your birthday is today, tells you “happy birthday!”.

#include <stdio.h>
#include <string.h>
#include <time.h>

int main() {
char fname[100];
char month[20];
char day[20];
char month_today[20];
char day_today[20];

// today's date
time_t t = time(NULL);
struct tm *tm = localtime(&t);

// convert today's date to C strings
strftime(month_today, 20, "%B", tm);
strftime(day_today, 20, "%-e", tm);

// read name
printf("What is your first name? ");
fgets(fname, sizeof(fname), stdin);
fname[strcspn(fname, "\n")] = '\0';

// read birth month
printf("What month were you born? ");
fgets(month, sizeof(month), stdin);
month[strcspn(month, "\n")] = '\0';

// read birth day
printf("What day were you born? (1-31) ");
fgets(day, sizeof(day), stdin);

22

day[strcspn(day, "\n")] = '\0';

// compare dates
if (strncmp(month, month_today, 20) == 0 &&

strncmp(day, day_today, 20) == 0) {
printf("Happy birthday, %s!\n", fname);

}
}

There’s a lot you probably have not seen here before. That’s OK!
We’ll go through the important parts now.

At the beginning of the program, we allocate storage for a number
of C strings: the user’s first name, month and day of birth, and today’s
month and day.

We then compute today’s date using time and localtime, and we
convert the output of locatltime to C strings using strftime. We are
not going to talk about these just yet, since they involve pointers, but if
you’re curious, look them up using man 3 time, etc.

After prompting the user for their name, we read what they type
in using the fgets call. fgets takes the destination array (“buffer” in
C-speak) as the first parameter, the maximum number of bytes to read
(so we use sizeof), and where we want to read from (in this case,
standard input or stdin). You’ll notice the odd-looking line

fname[strcspn(fname, "\n")] = `\0`;

right after. What problem do you think this line solves? Try running
the above program with and without that line. What happens? How
does strcspn solve the problem?

Finally, we compare the dates. Since C knows nothing about C
strings, we cannot use a simple == to compare them. Instead, we use
the strncmp function. strncmp takes two arrays and the maximum
number of characters to compare.

This program still leaves a lot to be desired. For example, it happily
accepts the following inputs:

What is your first name? Daniel
What month were you born? Octember
What day were you born? (1-31) 67

You can find documentation for all the C string functions by typing
man 3 string.

String Literals

Literal values are fixed values supplied with the source code of a pro-
gram. For example.

a brief overview of c 23

double pi = 3.14159265359;

C has special support for string literals, since they are used often,
just as they are in Java. The following is also a literal.

char *msg = "Hello, everyone!";

(we will discuss the meaning of the type char * soon)
You can use string literals in much the same way that you use char-

acter arrays in C (in fact, they are character arrays), with one critical
exception: string literals are read only. That means, if you take the
following program:

char *msg = "You all everybody!\n";
printf("\%s", msg);

and modify it (all we’re doing here is copying the string from its
current location back to its current location)

char *msg = "You all everybody!\n";
strcpy(msg, msg, strlen(msg));
printf("\%s", msg);

trying to run it will result in

Segmentation fault (core dumped)

Since string literals are usually stored in read only memory, you are
not allowed to update them. A segmentation fault is an error that occurs
when your program attempts to access memory with an operation that
is not allowed.

Printing, again

Let’s dig into the printf statement in a little more detail. As stated
before, printf is for printing.

printf takes at least one argument, but may take many more. The
first argument is called the format string. The format string must be a
string literal. For example,

printf("Hello world!\n");

But printf is more powerful than this. printf can also perform
string interpolation, which will substitute other text in for placeholders
you put into the format string. The manner in which this substitution
is performed depends on the kind of placeholder you use. This is why
placeholders are called format specifiers.

For example.

24

Format Specifier Purpose
%c a single character
%d an int, printed as a decimal (base 10) number
%u an unsigned int (aka uint) printed as a decimal number
%f a floating point number
%s a C string
%x an int, printed as a hexadecimal (base 16) number
%o an int, printed as an octal (base 8) number
% a literal percent sign

Table 5: Some C format specifiers.

char *name = "Dan";
printf("Hello %s!\n", name);

Here we’re asking printf to substitute the variable name where the
%s format specifier appears. You can put as many format specifiers in
the format string as you like, as long as you supply enough values to
printf to do the substitution.

char *name = "Dan";
char *town = "Williamstown";
char *state = "Amazing Commonwealth of Massachusetts";
printf("Hello %s, who lives in %s in the %s", name, town, state);

Choosing the appropriate format specifier depends on the 1) type
of the data you want to print, and 2) the manner in which you want
it printed. Above, we used %s, which is for printing C strings. A sum-
mary of the most useful format specifiers is shown in Table 5.

You can also do a variety of useful formatting transformations, like
printing with a lower precision. For example,

double pi = 3.14159265359;
printf("\%.4f\n", pi);

prints 3.1416 to the screen. Note that the last digit is rounded up.
Rounding rules for floating point numbers follow the rules specified
by the IEEE 754 floating point standard.

See man 3 printf for more information.

Control constructs

C has the same control constructs that Java has: for and while loops,
and if and else conditionals.

A for loop:

printf("I'm not listening to you ");
for(int i = 0; i < 1000; i++) {

a brief overview of c 25

printf("LA");
}
printf("\n");

A while loop:

char c = 'n';
while(c != 'y') {
printf("Are you annoyed yet? y/n ");
c = getchar();
fpurge(stdin);

}

(Think about why I am able to compare c with 'y' even though I
said that C does not support comparison of strings. Also, what does
fpurge do?)

A conditional:

if (1 == 2) {
printf("Bad things are happening.");

} else {
printf("Well OK, then.");

}

	A Brief Overview of C
	The C Compiler
	History
	A typographic convention for this course
	Compiling using clang
	Running the program
	Don't speak gibberish
	Makefiles
	More C

