
Examples of External Memory Analysis

Sam McCauley

Written Oct 5 2021; Last Edited October 5, 2021

The purpose of this document is to give examples of how to analyze algorithms in the external memory
model. While you’ve seen a number of these examples in class, this is a version of those (and other) examples
in a more formal written form.

1 Reviewing the External Memory Model

In modern computing, cache performance is often more important than number of operations This is at odds
with classic algorithmic analysis, which measures number of operations. The external memory model is a
way to algorithmically analyze the cache performance of a given approach.

The idea of the external memory model is that it should carry over many of the advantages of classic algo-
rithmic running time analysis. The analysis should be relatively simple, and should be platform-independent.
External memory analysis provides a performance guarantee—that is to say, it is a worst-case analysis. We
will use asymptotic notation in our analysis; as with classic algorithmic analysis this allows us to give a
high-level, platform-independent view of performance without getting bogged down by details that don’t
affect bottom-line performance.

However, cache parameters differ massively between computers, and these parameters can have a massive
impact on performance.1 With this in mind, we need to use two parameters in our analysis:

• We use M to denote the size of the cache.

• We use B to denote the size of a cache line. We always have B �M .

With this in mind, we are ready to define our model. The basic unit of cost in our model is a cache miss. A
cache miss transfers B consecutive items to or from the disk, for a cost of 1.

In the external memory model, all computation
in cache is free. You can perform arbitrary compu-
tations on all items in cache. You can also rearrange
them however you want. The only restriction is that
data must be read from, and written to, disk in cache
lines of size B—where each such read or write costs
1.

Let M be the number of items we can store si-
multaneously in our cache. That means that when
we bring a new cache line of B items into cache, we must write B items back to disk. (We can bring them
in later if we need them again.) Note that these B items must be written consecutively to disk.

1For example, we will see that whether or not a problem entirely fits in cache can have an enormous impact on cache
performance.

1



Choosing What Fits in Memory With the above in mind, the decision of what’s stored in cache—that
is to say, when a new cache line comes in, the decision of what B items to evict and what M − B items
to retain—is crucially important to cache performance. In the external memory model, we assume that the
computer does this optimally. That means that when we analyze an algorithm, we can state exactly what
items we think the computer ought to store in cache, and we can assume that the computer follows through
on this. In practice, computers use an incredibly effective low-resource algorithm called CLOCK (which is
very similar to the Least Recently Used (LRU) policy, which evicts the B least recently accessed items); this
algorithm is very close to optimal for most practical workloads.

Vocabulary

• “Cache” of size M ; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive items

– (Sometimes called “memory access” or “I/Os” but I will try not to use those terms.)

• These B items are called a “block” or a “cache line”.

2 Simple Examples

Finding the minimum element in an array Consider a scan over an unsorted array A to find the
minimum element in A. This algorithm accesses the elements of A in order: A[0], A[1], . . . A[n−1], updating
the minimum after each access.

Lemma 1. Finding the minimum element of an array of n elements using the above approach requires
O(1 + n/B) cache misses.

Proof. In total, this algorithm accesses n elements of A in order: A[0], A[1], . . . , A[n− 1].
When accessing element A[0], elements A[1] . . . A[B − 1] will all be brought into cache (as they fit in the

same cache line). Therefore, after accessing A[0], there will not be any cache misses until A[B]. In general,
if there is a cache miss on A[i], the next cache miss will be on A[i + B].

Therefore, there will be a cache miss when accessing A[0], A[B], A[2B], . . . , A[b(n−1)/Bc]. This is O(n/B)
cache misses overall.

Note that accessing an array of n < B elements requires only one cache miss (after which the whole array
is in cache and computation is free).

Binary Search

Lemma 2. A binary search on an array of size n requires O(1 + log(n/B)) cache misses.

Proof. Binary search is recursive, so let’s solve this with a recurrence.
Each recursive call to binary search requires 1 cache miss (to look up the middle element), after which

there is a call to the same problem on size n/2.
Base case: a call to binary search on an array of size n < B requires 1 cache misses.
So in sum, we have:

T (n) = T (n/2) + O(1) if n ≥ B

T (n) = O(1) if n < B

Solving this equation, we have T (n) = O(1+log n/B). (The +1 term comes from the fact that we always
incur the cost of the base case, even if n < B.)

2



3 Matrix Multiplication in External Memory

First, let’s examine a simple three-loop algorithm for matrix multiplication, as shown in Figure 1.

for i = 1 to n:

for j = 1 to n:

for k = 1 to n:

C[i][j] += A[i][k] + B[k][j]

Figure 1: A simple implementation of matrix multipli-
cation.

Lemma 3. Assume that n � M and n � B (i.e.
n is much larger than the size of cache or the size
of a cache line), and assume that all three matrices
are stored in row-major order.2 Then multiplying
two n × n matrices using the approach in Figure 1
requires O(n3) cache misses in the external memory
model.

Proof. Let’s break the cost down into three parts:
the cost for all accesses in A, in B, and in C.

Cost for all accesses to A: Consider the cost of the inner loop accessing A (the loop over k). Successive
accesses to the loop access successive elements in a row of A. Let’s assume that, for some i we have a cache
miss on A[i][k]; since these elements are stored consecutively in memory we won’t have another cache miss
until we access A[i][k + B]. In other words, we have cache misses on A[i][0], A[i][B], A[i][2B], and so on.
Therefore, each inner loop requires O(n/B) cache misses.

Each iteration of the middle loop (over j) performs the above n times. Because n�M , we do not have
space to store all of the ith row of A in memory. Therefore, we will again incur n/B cache misses for each
iteration of j. In total, over all iterations of the middle loop, we incur n · n/B cache misses.

Finally, each iteration of the outer loop (over i) repeats the above for each row of A. There are n rows,
so the total cost to access A is n3/B.

Cost for all accesses to matrix B: Consider the cost of the inner loop accessing B (the loop over k).
Successive accesses to the loop access elements in different rows of B. When accessing B[k][j], we can bring
in B elements from row k of B. However, our next access is to B[k + 1][j], incurring a cache miss. In total,
each new k accesses a new row of cache, causing n cache misses for each iteration of the inner loop.

Each iteration of the middle loop (over j) performs the above n times. Because n�M , we do not have
space to store a cache line from all of the nth rows of B in memory. Therefore, we will again incur n cache
misses for each iteration of j. In total, over all iterations of the middle loop, we incur n · n cache misses.

Finally, each iteration of the outer loop (over i) repeats the above n times. This gives a total cost of
O(n3) cache misses.

Cost for all accesses to matrix C: Consider the cost of the inner loop accessing C (the loop over k).
All of these accesses access C[i][j]. If C[i][j] is not in cache this requires one cache miss; otherwise it requires
0.

Each iteration of the middle loop (over j) iterates over the elements in row i of C. As above, if we have
a cache miss on C[i][j], there will not be a cache miss until C[i][j + B]. Summing, the middle loop requires
a total of n/B cache misses.

Finally, each iteration of the outer loop (over i) repeats the above n times; once for each row of C. This
gives a total cost of O(n2/B) cache misses.

Total: Summing the above costs, we obtain O(n3 + n3/B + n2/B) = O(n3) cache misses.

2This means that each row of a matrix is stored consecutively in memory.

3



for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

Figure 2: Swapping the two innermost loops to im-
prove cache efficiency.

To improve the cache efficiency of the simple ma-
trix multiplication algorithm in Figure 1, we need to
improve the cache efficiency of accesses to matrix B.
One way to do this is to change how we store matrix
B—perhaps we could store it in column-major or-
der for example. But, a classic observation is that we
can easily improve the cache efficiency by swapping
the middle and innermost loop, obtaining Figure 2.
Note that we are iterating over the exact same ele-
ments and doing the same multiplications, so the algorithm remains correct.

The following analysis is extremely similar to the analysis of Lemma 3.

Lemma 4. Assume that n � M and n � B (i.e. n is much larger than the size of cache or the size of a
cache line), and assume that all three matrices are stored in row-major order.3 Then multiplying two n× n
matrices using the approach in Figure 2 requires O(n3/B) cache misses in the external memory model.

Proof. Let’s break the cost down into three parts: the cost for all accesses in A, in B, and in C.

Cost for all accesses to A: Consider the cost of the inner loop accessing A (the loop over j). All of these
accesses access A[i][k]. If A[i][k] is not in cache this requires one cache miss; otherwise it requires 0.

Each iteration of the middle loop (over k) iterates over the elements in row i of A. If we have a cache
miss on A[i][k], there will not be a cache miss until A[i][k + B]. Summing, the middle loop requires a total
of n/B cache misses.

Finally, each iteration of the outer loop (over k) repeats the above n times; once for each row of A. This
gives a total cost of O(n2/B) cache misses.

Cost for all accesses to matrix B: Consider the cost of the inner loop accessing matrix B (the loop
over j). Successive accesses to the loop access successive elements in a row of B. Let’s assume that, for some
i we have a cache miss on B[k][j]; since these elements are stored consecutively in memory we won’t have
another cache miss until we access B[k][j + B]. In other words, we have cache misses on B[k][0], B[k][B],
B[k][2B], and so on. Therefore, each inner loop requires O(n/B) cache misses.

Each iteration of the middle loop (over k) repeats the above for each row of B. There are n rows, so the
total cost for the middle loop is O(n2/B).

Finally, the outer loop performs the above n times, for O(n3/B) memory accesses.

Cost for all accesses to matrix C: Consider the cost of the inner loop accessing C (the loop over j).
Successive accesses to the loop access successive elements in a row of C. Let’s assume that, for some i we
have a cache miss on C[i][j]; since these elements are stored consecutively in memory we won’t have another
cache miss until we access C[i][j + B]. In other words, we have cache misses on C[k][0], C[k][B], C[k][2B],
and so on. Therefore, each inner loop requires O(n/B) cache misses.

Each iteration of the middle loop (over k) repeats the above n times. Since n�M , there is not enough
space to store the entire row in cache, so each cache line may need to be brought into cache again as it is
reached. In total, the inner loop requires O(n2/B) cache misses.

Finally, each iteration of the outer loop (over i) repeats the above n times; once for each row of C. This
gives a total cost of O(n3/B) cache misses.

Total: Summing the above costs, we obtain O(n3/B + n2/B + n3/B) = O(n3/B) cache misses.

3This means that each row of a matrix is stored consecutively in memory.

4



3.1 Using the Cache More Effectively

None of the above algorithms use the cache—there is no M in any running time except when the whole
problem fits in cache. The reason is that each time something is brought into cache, it’s used once and then
thrown away. (With some small exceptions—for example, each cache line of C in the proof of Lemma 3 is
used in nB multiplications before being thrown away. But the large number of cache misses for A and B
dominate the overall performance.)

If we want to use cache properly, we need to bring a set of items into cache such that we can perform
many computations on them before writing them back. Note that this is not always possible. For example,
when finding the minimum, we only need to check each item once—after we see if it’s smaller than the
smallest item we’ve seen so far, there’s nothing to do with it except throw it away.

Blocking Blocking is an algorithmic technique to improve cache efficiency. Blocking follows the following
strategy:

1. Split the problems into subproblems that fit in cache (so we want subproblems of size O(M))

2. Solve these subproblems in cache one by one

3. Combine the solution to these subproblems to obtain the overall solution

3.2 Using Blocking for Matrix Multiplication

The basic idea of blocked matrix multiplication is to split A, B, and C into blocks of size M/3 (that way,
one block from each can fit in cache simultaneously). This means that we want T × T -sized blocks, where
T = b

√
M/3c. Assume that T divides n for simplicity.

A classic result states that we can multiply these blocks one at a time, as if we were multiplying n/T×n/T
matrices, and obtain the correct final solution. This leads to the algorithm shown in Figure 3

MatrixMultiply(A, B, C, n, T):

for i = 1 to n/T:

for k = 1 to n/T:

for j = 1 to n/T:

A’ = TxT matrix with upper left corner

A[Ti][Tk]

B’ = TxT matrix with upper left corner

B[Tk][Tj]

C’ = TxT matrix with upper left corner

C[Ti][Tj]

BlockMultiply(A’, B’, C’, T)

BlockMultiply(A, B, C, n):

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

Figure 3: Blocked matrix multiplication for better
cache efficiency

Perhaps surprisingly, this approach has a some-
what shorter analysis than the simpler algorithms:
we can just multiply the number of cache misses for
a single call to BlockMultiply() by the number of
such calls.

Lemma 5. Assume that n � M and n � B (i.e.
n is much larger than the size of cache or the size
of a cache line), and assume that all three matri-
ces are stored in row-major order. Then multiplying
two n × n matrices using the approach in Figure 3

requires O( n3

B
√
M

) cache misses in the external mem-

ory model.

Proof. First, consider the cost of BlockMultiply().
We call BlockMultiply with three T×T matrices as
arguments; let’s call them A′, B′, and C ′. Since A′,
B′, and C ′ fit in cache simultaneously, we can simply
read all three of them in, perform the multiplication
in cache, and write out the result to C. All three
have size T 2 = O(M), so reading them in row by
row requires O(T +M/B) cache misses. (Each cache
miss reads B more items in from one of the matrices;
the +T term comes from incurring at least one cache
miss for each row.)

5



We make (n/T )3 calls to BlockMultiply(). Therefore, the total cost is:

O

(( n
T

)3
· (T + M/B)

)
= O

((
n3

T 2
+

n3M

BT 3

))
= O

((
n3

M
+

n3

B
√
M

))
Oftentimes, we assume that M > B2 (almost certainly true in practice). In this case, each call to

BlockMultiply can be simplified to O(M/B) cache misses, leading to a final running time of O( n3

B
√
M

).

4 Sorting in External Memory

First, let’s analyze some important sorting subroutines.

Lemma 6. Paritioning an array A of length n requires O(1 + n/B) cache misses.

Proof. Consider a wasteful partitioning algorithm that uses an extra array A′ of size n. This algorithm first
looks at A[0], and sets two variables low= 0 and high= n − 1. Iterate through A[i] for i = 1 to n − 1. If
A[i] is lower than A[0], we put A[i] into slot A[low] and increment low; otherwise put A[i] into slot A[high]
and decrement high.

Assume we have a cache miss at A[i] for some i. Since we access the items consecutively, we will not
have another cache miss until A[i + B]. We have a cache miss at A[0], for O(1 + n/B) cache misses overall.

Similarly, we can write B consecutive values of low using a single cache miss; we can also write B
consecutive values of high using a single cache miss.4 We’re only accessing n items of A′ in total, so this
requires a total of O(1 + n/B) cache misses.

Summing, we obtain O(1 + n/B) cache misses.
Note that most implementations of partition (for example, clever in-place implementations) will usually

also require only O(n/B) cache misses.

Applying Lemma 6 to the classical quicksort analysis gives O( n
B log2

n
B ) cache misses in expectation and

with high probability on an array of size n > B, and a worst case of O(n2/B) cache misses. (This analysis
isn’t included here since it is just the classical probabilistic analysis combined with Lemma 6.)

1 2 3 5

4 16 64 256

1 2 4 . . .

Figure 4: Merging two sorted arrays into a single sorted array

Lemma 7. Assume that M > 3B. Then merging two sorted arrays A,B, each of length n, requires O(1 +
n/B) cache misses.

Proof. Consider a wasteful merge algorithm that creates an array C of length 2n and maintains a pointer to
each of A and B. At each point, it takes the smaller element being pointed to by either pointer and writes
it to C; the corresponding pointer is incremented.

Let’s look at the number of cache misses for each array individually. A is scanned over once. Assume
that we always keep one cache line from A in our cache. Then when we have a cache miss for A[i] we will not
have another cache miss until A[i + B]; giving O(1 + n/B) cache misses in total; the same analysis applies
for B and C (each of which also need to store a cache line in cache—we have room for this since M > 3B.
Totaling, we have O(1 + n/B) cache misses.

With a bound on the cost to merge we can analyze the number of cache misses incurred by merge sort.

4Notice that high is working backwards. That’s OK—you can still bring in a cache line ending at the element we’re accessing.

6



Lemma 8. Merge sorting an array A of size n > B requires O( n
B log2

n
B ) cache misses.

Proof. An iteration of merge sort on an array A consists of three steps:

1. Break A into two equal parts A1 and A2

2. Recursively sort A1 and A2

3. Merge the sorted A1 and A2 back into A.

Breaking A into two parts can be done in O(1 + n/B) cache misses. (Of course, this depends on the
implementation. If A1 and A2 are created as new arrays, and each element of A is copied into one or the
other, then O(1+n/B) cache misses are required as in Lemma 6. But, if A1 and A2 are passed using pointers
into portions of A, this can potentially be done with no cache misses at all. This choice does not affect the
final running time.)

We’ll include the cost of the recursion when we write our recurrence relation. Merging A1 and A2 takes
O(1 + n/B) cache misses from Lemma 7.

Writing our recurrence relation, we obtain

T (n) = 2T (n/2) + O(n/B) if n > B

T (n) = O(1) otherwise

Drawing the recurrence tree, we can see that the total work is O(n/B) at every level. The number of
levels is equal to the number of times we need to divide n by 2 until we obtain an array size smaller than B.
Solving n/2k = B, we obtain k = log2 n/B. Summing the cost of each level over all levels, we obtain

log2 n/B∑
`=0

O(n/B) = O(
n

B
log2

n

B
)

Using the cache The above algorithms have only used cache lines, without storing large amounts of data
in the cache. Can we take better advantage of the cache?

It’s not quite clear how to use blocking here. Sure, we could take subarrays of size O(M) into cache
and sort them. But how can we combine these subproblems together? Lemma 7 would work, but its cache
efficiency is limited.

M/B-way merge sort:

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B)
cache misses)

Figure 5: Methodology for M/B-way merge sort

A practice exercise along these lines:

1. Show that the approach above (sorting subar-
rays of size O(M), then merging them two at a
time) requires O(N

B (1 + log2
N
M ) cache misses.

Instead, we want to use the cache while merging.
Normal sort compares two items at a time. But with
a large cache, we can compare far more items than
that with a single cache miss. This brings us to an
optimal external-memory sorting algorithm: M/B-
way merge sort.

The heart of the M/B-way merge sort is the
method to merge M/B subarrays cache efficiently.
Let’s go into more detail about how that works. At any point in time, let’s keep B slots in cache for each
subarray we’re merging. (There are M/B subarrays, so this is ≤ M total items.) These B slots may not
all be full; however, if k of these slots are full, they must hold the k smallest unmerged values from the
corresponding subarray.

7



1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

Figure 6: Diagram of M/B-way merge sort

The merge proceeds as follows. Consider B memory slots in cache that we’ll use to write the solution
out to the final array.5 Let’s fill these slots up by repeating the following procedure B times:

1. Find the smallest item currently in the cache (ignoring any items previously selected for writing), and
move it to the next empty write slot

2. Assume that this item comes from subarray i. If there are no more items from i currently in cache,
bring the next B smallest items from i into cache

After the B write slots are filled, they must contain the B smallest unmerged item. Write these B items out
to the final solution array and repeat.

Lemma 9. Merging M/B arrays into a single array (of length n) using the above approach requires O(M/B+
n/B) cache misses.

Proof. Each of the subarrays being merged is scanned once, with B elements being brought into cache at a
time; therefore, if each subarray has size n′, the cost to merge each is O(1+n′/B). Substituting n′ = nB/M ,
the merge requires O(M/B + n/B) cache misses to scan all subarrays. The solution array is written to B
elements at a time, so it requires O(1 + n/B) cache misses. Summing obtains the lemma.

As with normal merge sort, the time required to do a single merge is most of our analysis.

Lemma 10. Performing M/B-way merge sort on an array of size n requires O( n
B logM/B

n
B ) cache misses.

Proof. Integrating Lemma 9 into our recursion, we obtain

T (N) =
M

B
T

(
N

M/B

)
+ O(N/B) if n > M

T (N) = O(1 + N/B) otherwise

Let’s solve this recurrence. Writing out the recursion tree, each level of the tree requires a total of
O(N/B) cache misses. The number of levels is the number of times that we need to divide n by M/B until
M is reached; plus 1 for the base case itself. Summing over each level `, we obtain:

1+logM/B n/M∑
`=1

O(n/B) = O
( n
B

(1 + logM/B

n

M

)
= O

( n
B

logM/B

n

B

)
.

5Note that we need an extra B slots in cache for this to work. In this case, we should probably use (M/B − 1)-way merge
sort to make sure we have room for these slots. We’ll ignore this off-by-one error to keep things simple.

8


