
CS358: Applied Algorithms

Mini-Midterm 3: MIPs and ILPs (due 11/17/21)

Instructor: Sam McCauley

Instructions

All submissions are to be done through github, as with assignments. This process is detailed
in the handout “Handing In Assignments” on the course website. Answers to the questions
below should be submitted by editing this document. All places where you are expected
to fill in solution are marked in comments with “FILL IN.” You will also be given one .lp

file to fill in: clerks.lp. The mini-midterm will not have a leaderboard or any automated
testing.

Please contact me at srm2@williams.edu if you have any questions or find any problems
with the materials.

This is a mini-midterm (as defined on the syllabus). This means that all work must be
done alone. Please do not discuss solutions with any other students, even at a high level.
You should not look up answers, hints, or even code libraries on the internet. This midterm
was designed to be completed with no external resources, beyond those explicitly linked in
the midterm. (Class resources, such as slides, notes, the GLPK manual, and your previous
assignment submissions, are of course acceptable, as are basic resources such as looking up
debugging information.)

For this mini-midterm, each question begins a new page. (It got very busy without this
change.) Make sure you answer all six questions!

A comment on grading: remember that we have four tests over the course of the semester,
and (while important) this midterm is only worth 20% of your final grade.

Furthermore, some problems may seem a bit harder than others. As always, if you’re
unsure of a 100% correct solution, make sure to write down the ideas you have for partial
credit.

1

srm2@williams.edu

Mini-Midterm 3: MIPs and ILPs 2

Problem 1 (15 points). Let’s generalize the router assignment problem we saw in class to
the case with multiple routers.

There are n roommates living in a single-floor house; roommate i is located at coordinates
(xi, yi). You want to place k routers in the house. Let the distance between roommate i and
a router at (x, y) be defined as |xi − x|+ |yi − y|.

You want to place the routers under the following constraints:

• Each roommate must be assigned to exactly one router

• The router i assigned to a roommate r must satisfy that the distance between router
i and roommate r is at most 10.

Your goal is to minimize the sum, over all roommates, of the distance between the
roommate and the router they are assigned to.

To be clear, you receive as input n, k, and the coordinates of all n roommates:
(x1, y1), (x2, y2), . . . (xn, yn).

Give an ILP or MIP for this problem and prove that it is correct.

Solution.

Mini-Midterm 3: MIPs and ILPs 3

Problem 2 (15 points). The following is a fairly classic bin packing problem. Let’s solve
it using a branch and bound approach. This question will not have any LP, ILP, or MIP in
it—it’s just about how branch and bound itself works.1

Problem Statement: You have n items with weights W = w1, . . . , wn. You have m bins
with capacities C = c1, . . . cm; these are given in decreasing order. Your job is to assign items
to bins, with the restriction that the total weight of all items assigned to bin i is at most ci.

The goal is to minimize the number of bins that have any item assigned to them. (To
rephrase in case it helps with clarity: your goal is to maximize the number of empty bins
with no item assigned.)

You may assume that, without loss of generality, a solution that uses k bins uses bins
1, . . . k (you don’t want to “skip over” bins to use a later bin—that wouldn’t make sense
since the later bins are smaller).

A Recursive Approach: The following recursive algorithm solves this problem optimally
by considering every possible solution (recall that V \ {v} means the set resulting when
removing v from V):

BinPacking(V, i, w):
1. If |V | = 0 or i > m return i
2. bestSoFar ← m + 1
3. for all v ∈ V :

• if w+wv ≤ ci, then bestSoFar ← min{bestSoFar, BinPacking(V \{v}, i, w+
wv)}.

4. bestSoFar ← min{bestSoFar, BinPacking(V, i + 1, 0)}.
5. return bestSoFar

For any set of items V , any i ∈ {1, . . .m}, and any w, BinPacking(V, i, w) returns the
smallest j such that all items in V can be stored in bins {i, i+ 1, . . . , j} (where bin i already
has weight w of items stored in it); if no such j exists then BinPacking returns m + 1.2

Therefore, we can solve this problem by calling BinPacking(W, 1, 0).

Developing Branch and Bound: The remainder of this question is in two parts.

(a) Give a simple method3 LowerBound(V, i, w) that gives a lower bound on the
number of bins necessary from i, i + 1, . . . ,m in order to store all items from V given that
bin i already has w worth of items in it. Explain your solution: why is this is a lower bound?
(A brief explanation is sufficient.)

Solution.

1That said—yes, in general one could absolutely solve this with an ILP.
2I won’t include the proof of correctness—you may take as given that this is true.
3The “simple” here is to emphasize that I’m not looking for a complicated approach. I just want a way

to immediately get some lower bound on the value of the solution. In particular, I don’t anticipate taking
off points for a solution not being simple enough.

Mini-Midterm 3: MIPs and ILPs 4

(b) Use LowerBound(V, i, w) to create an algorithm BinPackingWithBounds that
avoids some of the recursive subcalls made by BinPacking. Your algorithm should be
a modification of the BinPacking algorithm (to this end, the code for BinPacking is
included below; modify it to obtain your solution).

Prove that your BinPackingWithBounds algorithm will give the correct answer. (You
may assume what was already mentioned above: that LowerBound correctly lower bounds
the subproblem solution, and that BinPacking is correct.)

Hint: There must be some optimal solution to each recursive BinPackingWithBounds
call. Prove that your algorithm will always make a recursive call containing this solution.
The remainder of the proof follows from this.

Solution.

BinPacking(V, i, w):
1. If |V | = 0 or i > m return i
2. bestSoFar ← m + 1
3. for all v ∈ V :

• if w+wv ≤ ci, then bestSoFar ← min{bestSoFar, BinPacking(V \{v}, i, w+
wv)}.

4. bestSoFar ← min{bestSoFar, BinPacking(V, i + 1, 0)}.
5. return bestSoFar

Mini-Midterm 3: MIPs and ILPs 5

Problem 3 (20 points). Let’s go back to a problem you may have seen in CS 136.4

You are given a set of n students, each of whom are taking four of m classes. Your goal
is to assign each of the m classes to one of k time slots, under the following constraint:

• if any student is taking two classes i and j, then i and j may not be assigned to the
same time slot.

Under this constraint, you want to minimize the number of times a student has an exam
scheduled in three consecutive time slots. (For example, if a student has an exam scheduled
in time slot 6, another in time slot 7, and another in time slot 8, that student would count
towards this total.) Note that I said number of times : if a student’s courses are scheduled
in four consecutive time slots, that would add 2 to this total. (So a student with exams in
time slots 2, 3, 4, and 5, there are two sequences of three slots: 2, 3, 4 and 3, 4, 5. These two
sequences each add 1 to the total, for an increase of 2 overall.)

You are given as input a sequence of n lists of length 4; list i gives the classes taken by
student i. You are also given n, m, and k.

Give an MIP or ILP to solve this problem. You do not need to prove that it is correct
(though it may be a good exercise to verify your solution).

Solution.

4It was extra credit; it’s quite possible you didn’t encounter it. Note that we’re solving a slightly different
version of the problem presented there.

Mini-Midterm 3: MIPs and ILPs 6

Problem 4 (15 points). A bank is open from 9:00 to 15:00. During each hour of the day,
the number of clerks required is shown in the following table:

Time Period No. of Clerks

9:00–10:00 4
10:00–11:00 3
11:00–12:00 4
12:00–13:00 6
13:00–14:00 5
14:00–15:00 6

The bank can hire full-time and part-time clerks. Full-time clerks work from 9:00 to
15:00 except for a one-hour lunch break, which is from 12:00–13:00 or from 13:00–14:00 (the
bank decides the time at which each clerk takes their lunch break). The clerks are paid
$8 per hour (and receive payment for their lunch break). Part-time clerks work for three
consecutive hours and the bank specifies the start time for each of them. Part-time clerks
are paid $6 per hour. No more than five part time clerks can be hired.

Solve this problem using GLPK, in the file clerks.lp. Write below: how many full-time
employees are hired in your solution, and what are their lunch breaks?

Solution.

Mini-Midterm 3: MIPs and ILPs 7

Problem 5 (20 points). The following is a variant of the Travelling Salesman Problem.
Let’s say you have a collection of n points; for each pair of points i and j there is a cost

cij to travel from i to j.
In addition, k target points are identified (they are a subset of the n points above).
Your goal is to find the shortest cycle that visits all k of the target points. Your cycle

may also visit points that are not target points—the only requirement is that at least the k
target points must be visited. To be clear, the solution must be a “cycle”: the cycle must
start and stop in the same place, and the cycle cannot visit any point more than once. (In
particular, each of the target points must be visited exactly once; each of the n − k points
that are not target points can be visited at most once.)

The input consists of: n, k, the n2 values for cij, and a list of k target points.
Give an MIP or ILP for this problem and prove that it is correct.

Solution.

Mini-Midterm 3: MIPs and ILPs 8

Problem 6 (15 points). You are given a set of n strings, each of length m.
Your goal is to find the longest string s such that s is a subsequence of all n input strings.

That is to say: for every input string i, the characters of s should all appear in i (in order,
but not necessarily consecutively).

For example, if the input is:

tomorrownamaste

tomatosteerings

antimasterheads

tastetastetaste

Then the solution is taste. (The red highlighted characters in the below can be used to
verify that this is, in fact, a solution; I believe there is no longer solution.)

tomorrownamaste

tomatosteerings

antimasterheads

tastetastetaste

Give an MIP or ILP to solve this problem. You do not need to prove that it is correct
(though it may be a good exercise to verify your solution).

Hint: if the solution has length k, then there are exactly k characters from each input
string that are matched to the solution string (here I’m referring to the red characters in the
above). This may simplify your objective function.

Solution.

