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We study competition in matching markets with random heteroge-
neous preferences and an unequal number of agents on either side.
First, we show that even the slightest imbalance yields an essentially
unique stable matching. Second, we give a tight description of stable
outcomes, showing that matching markets are extremely competitive.
Each agent on the short side of the market is matched with one of his
top choices, and each agent on the long side either is unmatched or
does almost no better than being matched with a random partner.
Our results suggest that any matching market is likely to have a small
core, explaining why small cores are empirically ubiquitous.
I. Introduction
Stable matching theory has been instrumental in the study and design of
numerous two-sidedmarkets. Two-sidedmarkets are described by two dis-
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70 journal of political economy
joint sets of men and women, where each agent has preferences over po-
tential partners. Examples include entry-level labor markets, dating, and
college admissions. The core of a two-sided market is the set of stable
matchings, where a matching is stable if there are no man and woman
who both prefer each other over their assigned partners. Stability is a use-
ful equilibrium concept for these markets since it predicts observed out-
comes in decentralized markets and since stability is a critical require-
ment for the success of centralized clearinghouses.1

This paper analyzes competition in matching markets to address two
fundamental issues. First, we address the long-standing issue of multiplic-
ity of stable matchings.2 Previous studies show that the core is small only
under restrictive assumptions on market structure, suggesting that the
core is generally large. In contrast, matching markets have an essentially
unique stable matching in practice.3 Second, relatively little is known
about how the structure of stable outcomes is determined bymarket char-
acteristics. For example, it is known that increasing the number of agents
on one side makes agents on the other side weakly better off (Crawford
1991), but little is known about the magnitude of this effect.
We address these issues by looking at randomly drawn matching mar-

kets, allowing for competition arising from an unequal number of agents
on either side. Influential works by Pittel (1989b) andRoth and Peranson
(1999) study the same model with an equal number of agents on both
sides and find that the core is typically large. Our first contribution is
showing that this is a knife-edge case: the competition resulting from
even the slightest imbalance yields an essentially unique stable matching.
Our results, which hold for both small and largemarkets, suggest that any
matching market is likely to have a small core, thereby providing an ex-
planation as to why small cores are empirically ubiquitous.
1 Hitsch, Hortaçsu, and Ariely (2010) and Banerjee et al. (2013) use stable matchings to
predict matching patterns in online dating and the Indian marriage market, respectively.
Stable matching models have been successfully adopted in market design contexts such as
school choice (Abdulkadiroğlu, Pathak, and Roth 2005; Abdulkadiroglu et al. 2006) and
resident matching programs (Roth and Peranson 1999). Roth and Xing (1994) and Roth
(2002) show that stability is important for the success of centralized clearinghouses.

2 The potential multiplicity of stable matchings is a central issue in the literature and has
led to many studies about the structure of the core (Knuth 1976), which stable matching to
implement (Schwarz and Yenmez 2011), and strategic behavior (Dubins and Freedman
1981; Roth 1982).

3 A unique stable matching was reported in the National Resident Matching Program
(NRMP; Roth and Peranson 1999), Boston school choice (Pathak and Sönmez 2008), on-
line dating (Hitsch et al. 2010), and the Indian marriage market (Banerjee et al. 2013). We
are not aware of any evidence of a large core in a matching market.
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Our second contribution is that the essentially unique stable outcome
can be almost fully characterized using only the distribution of pref-
erences and the number of agents on each side. Roughly speaking, under
any stable matching, each agent on the short side of the market is
matched with one of his top choices. Each agent on the long side either
is unmatched or does almost no better than being matched with a ran-
dompartner. Thus, we find thatmatchingmarkets are extremely compet-
itive, with even the slightest imbalance greatly benefiting the short side.
We present simulation results showing that the short side’s advantage is
robust to small changes in the model.
Formally, we consider amatchingmarket with nmen and n1 1 women.

For each agent we independently draw a complete preference list uni-
formly at random. We show that with high probability, (i) the core is
small in that almost all agents have a unique stable partner (i.e., they are
matched with the same partner in all stable matchings), and (ii) under
any stable matching men are, on average, matched with their log nth
most preferred woman, while matched women are, on average, matched
with their n/(log n)thmost preferredman. Thus agents on the short side
rank their partners, on average, as they would if they were to choose part-
ners in sequence.4 Matched agents on the long side, on average, rank
their partners approximately the same as if they each chose their match
only from a limited, randomly drawn set of log n potential partners. For
example, in a market with 1,000 men and 1,001 women, men are matched
on average with their seventh (≈ log 1,000) most preferred woman, while
women are matched on average with their 145th (≈ 1,000/log 1,000)
most preferred man. We further show that the benefit to the short side
is amplified when the imbalance is greater.
Given that the smallest imbalance leads to a small core, even when pref-

erences are heterogeneous and uncorrelated, we expect that matching
markets will generally have a small core. In real settings preferences
are likely to be correlated, but it is generally thought that correlation re-
duces the size of the core (see, e.g., Roth and Peranson 1999), and this
notion is supported by simulation results in Section IV. We simulated
markets with varying correlation structures, market sizes, and list lengths,
and for all of them we found that imbalance leads to a small core.
A small core implies that there is limited scope for strategic behavior.

Suppose that agents report preferences to a central mechanism, which
implements a matching that is stable with respect to reported prefer-
ences. Demange, Gale, and Sotomayor (1987) consider the induced full
4 The corresponding mechanism would be random serial dictatorship, under which
men are randomly ordered and each man is assigned in turn to his most preferred woman
who was not previously assigned (see, e.g., Abdulkadiroğlu and Sönmez 1998).
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information game and show that agents who have a unique stable partner
are unable to gain frommisreporting their preferences. It follows that in
unbalanced markets with incomplete information, truthful reporting is
an ε-Bayes-Nash equilibrium.5 This suggests that agents should report
their preferences truthfully to stablematchingmechanisms andmay help
explain the practical success of stable matching mechanisms.
To gain some intuition for the effect of imbalance in matching mar-

kets, it is useful to compare our setting with a competitive, homogeneous
buyer-seller market. In a market with 100 homogeneous sellers who have
unit supply and a reservation value of zero and 100 identical buyers who
have unit demand and value the good at one, every price between zero
and one gives a core allocation.However, when there are 101 sellers, com-
petition among sellers implies a unique clearing price of zero, since any
buyer has an outside option of buying from the unmatched seller who
will sell for any positive price.
Our results show a sharp phenomenon in random matching markets

similar to the one in the homogeneous buyer-seller market, despite het-
erogeneous preferences and the lack of transfers. In particular, the direct
outside option argument (used above in the buyer-seller market) does
not explain the strong effect of a single additional woman: while the un-
matched woman is willing to be matched with any man, she creates a use-
ful outside option only for a few men who rank her favorably. However,
this outside option makes these men better off, making their spouses
worse off. The men who like these spouses must, in turn, be made better
off. This effect ripples through the entire market, making most men bet-
ter off.
Our proof requires developing some technical tools that may be of in-

dependent interest. We build on the work of McVitie and Wilson (1971)
and Immorlica and Mahdian (2005) to construct an algorithm that cal-
culates the women-optimal stable matching through a series of rejection
chains. Previous analysis of rejection chains by Immorlica and Mahdian
(2005) and Kojima and Pathak (2009) analyzed each rejection chain in-
dependently. Our new algorithm accounts for the interdependence be-
tween different rejection chains, allowing us to analyze the ripple effect
generated by a small imbalance. The progress of the modified algorithm
on random preferences can be captured by a tractable stochastic pro-
cess, whose analysis reveals that different chains are likely to be highly
connected.
5 Furthermore, agents with a unique stable partner will be unaffected by profitable ma-
nipulations by other agents.
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A. Related Literature
Most relevant to our work are the studies by Pittel (1989a) and Knuth,
Motwani, and Pittel (1990), who extensively analyze balanced random
matchingmarkets. They characterize the set of stablematchings for a ran-
dommatching market with n men and n women, showing that the men’s
average rank of wives ranges from log n to n/log n in different stable
matchings and that the fraction of agents with multiple stable partners
approaches one as n grows large. Roughly, our results show that the addi-
tion of a single woman makes the core collapse, leaving only the stable
matching that is most favorable for men.
Several papers study the size of the core to understand incentives to

misreport preferences, analyzing matching markets in which one side
has short, randomly drawn preference lists.6 Immorlica and Mahdian
(2005) show that women cannot manipulate in a one-to-one marriage
market, and Kojima and Pathak (2009) show that schools cannot manip-
ulate in many-to-one matching markets. Our results differ in two ways.
First, these papers are limited to studying manipulation and the size of
the core, while we characterize outcomes and show that competition ben-
efits the short side of themarket. Second, their analysis relies on a specific
market structure, which generates a large number of unmatched agents.7

This market structure was necessary for the analysis in these papers, lead-
ing them to conclude that the core is likely to be small only under restric-
tive assumptions.
Coles and Shorrer (2014) and Lee (forthcoming) study manipulation

in asymptotically large balanced matching markets, making different as-
sumptions about the utility functions of agents. Coles and Shorrer (2014)
define agents’ utilities to be equal to the rank of their spouse (varying
between one and n), which grows linearly with the number of agents in
the market. They show that women can profitably manipulate the men-
proposing deferred acceptance mechanism. Lee (forthcoming) allows for
correlation in preferences but assumes that utilities are bounded and the
market grows large. He shows that in large markets most agents cannot
profitably manipulate the men-proposing deferred acceptance mecha-
nism. The different results stem in part from the different utility pa-
rameterizations. In a balancedmarket an agent’s rank of his or her spouse
6 The random, short list assumption is motivated by the limited number of interviews
as well as the NRMP restriction that allows medical students to submit a rank-ordered list
of up to only 30 programs (http://www.nrmp.org/match-process/create-and-certify-rol
-applicants/) and by the limited number of interviews.

7 Their proof requires that randomly drawn preference lists are short enough for agents
to have a significant probability of remaining unmatched. Thus, though they assume an
equal number of seats and students, their market behaves like a highly unbalancedmarket.
Unless being unmatched is an attractive option, this implies that agents are not submitting
long enough lists.
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can range from log n to n/log n, and this difference in rank can be small
or large in terms of utilities.8

The literature on matching markets with transferable utility provides
theoretical predictions on who is matched with whom based on market
characteristics. Rao (1993) and Abramitzky, Delavande, and Vasconcelos
(2011) exploit random variation in female-male balance to show that out-
comes in themarriage market favor the short side. Also related to this pa-
per is the well-known phenomenon that increasing the relative number
of agents of one type (“buyers”) benefits agents of the other type (“sell-
ers”) (Shapley and Shubik 1971; Becker 1973). Our paper provides the
first quantification of this effect in matching markets without transfers.
Several papers studied markets with strong correlation in preferences.

It is well known that if all men have the same preferences over women,
there is a unique stablematching. Holzman and Samet (2014) generalize
this observation, showing that if the distance between any twomen’s pref-
erence lists is small, the set of stable matchings is small. Azevedo and
Leshno (2016) look at large many-to-one markets with a constant num-
ber of schools and an increasing number of students; they find that the
set of stable matchings generically converges to the unique stable match-
ing of a continuummodel. The core of thesemarkets can equivalently be
described as the core of a one-to-one matching market between students
and seats in schools, where all seats in a school have identical preferences
over students.
B. Organization of the Paper
Section II presents our model and results. Section III provides intuition
for the results, outlines our proof, and presents the new matching algo-
rithm that is the basis for our proof. Section IV presents simulation re-
sults, which show that the same features occur in small markets, and ver-
ifies the robustness of our results. Section V gives some final remarks and
discusses the limitations of our model.
Online appendix A proves the correctness of our new matching algo-

rithm. The proof of our main results is in online appendix B. In online
appendix C, we discuss how our results may be extended to many-to-
one random matching markets.
8 Both log n/n and 1/log n converge to zero, meaning that as the market gets large,
both men and women are matched with a partner in the top percentile of their prefer-
ences, although the convergence for women is very slow. For example, log n/n5 1 percent
for n ≈ 600, but 1/log n 5 1 percent for n ≈ 2.68 � 1043.
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II. Model and Results

A. Random Matching Markets
A two-sided matchingmarket is composed of a set of menM 5 f1, ::: , ng
and a set of womenW 5 f1, ::: ; n 1 kg. Eachmanm has a complete strict
preference list ≻m over the set of women,9 and each woman w has a com-
plete strict preference list ≻w over the set of men. Amatching is a mapping
m fromM [ W to itself such that for every m ∈ M, mðmÞ ∈ W [ fmg;
for every w ∈ W, mðwÞ ∈ M [ fwg; and for every m, w ∈ M [ W,
mðmÞ 5 w implies mðwÞ 5 m. We use mðwÞ 5 w to denote that woman w
is unmatched under m.
A matching m is unstable if there are a man m and a woman w such that

w ≻m mðmÞ andm ≻w mðwÞ. A matching is stable if it is not unstable. It is well
known that the core of a matching market is the set of stable matchings.
We say that m is a stable partner for w (and vice versa) if there is a stable
matching in which m is matched with w.
A random matching market is generated by drawing a complete prefer-

ence list for each man and each woman independently and uniformly
at random. Thus, for each man m, we draw a complete ranking ≻m from
a uniform distribution over the jWj ! possible rankings.
A stable matching always exists and can be found using the deferred

acceptance (DA) algorithm byGale and Shapley (1962).10 They show that
the men-proposing DA finds the men-optimal stable matching (MOSM), in
which every man is matched with his most preferred stable woman. The
MOSM matches every woman with her least preferred stable man. Like-
wise, the women-proposing DA produces the women-optimal stable
matching (WOSM) with symmetric properties.

We are interested in the size of the core, as well as howmatched agents
rank their assigned partners. Denote the rank of woman w in the prefer-
ence list ≻m ofmanm by RankmðwÞ ; jfw 0

: w
0 ≽m wgj. A smaller rank is bet-

ter, andm’s most preferred woman has a rank of 1. Symmetrically, denote
the rank of m in the preference list of w by Rankw(m).
Definition 1. Given a matching m, the men’s average rank of wives is

given by

RMENðmÞ 5
1

jMnMj o
m∈MnM

RankmðmðmÞÞ,

where M is the set of men who are unmatched under m. Similarly, the
women’s average rank of husbands is given by
9 That is, each man prefers any woman over being unmatched.
10 We describe the DA algorithm in Sec. III.
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R WOMENðmÞ 5
1

jWnWj o
w ∈ WnW

RankwðmðwÞÞ,

where W is the set of women who are unmatched under m.
We use two metrics for the size of the core. First, we consider the frac-

tion of agents who havemultiple stable partners. Second, we consider the
difference between the men’s average rank of wives under the MOSM
and under the WOSM.
B. Previous Results
Previous literature has analyzed balanced random matching markets,
which have an equal number of men and women. We start by citing a
key result on the structure of stable matchings in balanced markets.
Theorem (Pittel 1989a). In a random matching market with n men

and n women, the fraction of agents who have multiple stable partners
converges to one as n → ∞. Furthermore,

R MENðMOSMÞ
log n

→
p
1,

RMENðMOSMÞ
n= log n

→
p
1,

where →
p

denotes convergence in probability.
This result shows that in a balanced market, the core is large under

both measures: most agents have multiple stable partners, and the men’s
average ranks of wives under the MOSM and the WOSM are significantly
different. We find that this does not extend to unbalanced markets.
C. The Size of the Core in Unbalanced Markets
In our main result, we show that in a typical realization of an unbalanced
market, almost all agents have a unique stable partner, and the men’s av-
erage rank of wives and the women’s average rank of husbands are almost
the same under all stable matchings. We omit quantifications for the sake
of readability and give a stronger version of the theorem in online appen-
dix B.
Theorem 1. Consider a sequence of random matching markets, in-

dexed by n, with nmen and n 1 k women, for arbitrary k 5 kðnÞ ≥ 1. Fix
any ε > 0. With high probability,11 we have that
11 Given a sequence of events fEng, we say that this sequence occurs with high probability
if limn→∞ PðEnÞ 5 1.
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i. the fraction of men and the fraction of women who have multiple
stable partners are each no more than ε, and

ii. the men’s average rank of wives is almost the same under all stable
matchings, as is the women’s average rank of husbands:12

RMENðWOSMÞ ≤ ð1 1 εÞRMENðMOSMÞ,
RWOMENðWOSMÞ ≥ ð1 1 εÞRWOMENðMOSMÞ:
For centralized unbalancedmarkets, this result implies that the choice
of the proposing side in DA makes little difference. For decentralized
markets, this implies that stability gives an almost unique prediction.
Figures 1 and 2 illustrate the results and show that the same features

hold in small unbalanced markets. Figure 1 reports the fraction of men
who have multiple stable partners in random markets with 40 women
and 20–60 men. Figure 2 plots the men’s average rank of wives under
MOSM and WOSM. Observe that, even in such small markets, the large
core of the balancedmarket (40men and 40 women) is a knife-edge case.
D. Characterization of Stable Outcomes
The next theorem shows the advantage of the short side. When there are
more women than men, the men’s average rank of wives is small, mean-
ing thatmostmenarematchedwith oneof their top choices.On the other
hand, the women’s average rank of husbands is notmuch better than that
resulting from random assignment. The theorem states the result for a
general imbalanced market, and we give simplified expressions for spe-
cial cases of interest in the next subsection. We give a stronger version
of the theorem in online appendix B.
Theorem 2. Consider a sequence of random matching markets, in-

dexed by n, with nmen and n1 k women, for arbitrary k 5 kðnÞ ≥ 1. Fix
any ε > 0. With high probability, the following hold for every stable
matching m:

RMENðmÞ ≤ ð1 1 εÞ n 1 k

n

� �
log 

n 1 k

k

� �
,

RWOMENðmÞ ≥ n= 1 1 ð1 1 εÞ n 1 k

n

� �
log 

n 1 k

k

� �� �
:

For comparison, consider the assignments generated by themen’s ran-
dom serial dictatorship (RSD) mechanism. In RSD, men are ordered at
random, and eachman chooses his favorite womanwho has yet to be cho-
12 For any stable matching m it follows from the properties of the MOSM andWOSM that
RMENðMOSMÞ ≤ RMENðmÞ ≤ RMENðWOSMÞ.
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sen (ignoring women’s preferences). The men’s average rank of wives
under RSD is approximately ½ðn 1 kÞ=n�log½ðn 1 kÞ=k�.13 Thus, under any
stable matching, the men’s average rank of wives would be almost the
same as under RSD. The women’s average rank of husbands under any
stable matching is better than getting a random husband by only a small
factor of at most log n. Thus, roughly speaking, in any stable matching,
the short side “chooses” while the long side is “chosen.”
Figure 2 illustrates the advantage of the short side. When men are on

the short side (there are fewer than 40 men), they are matched, on aver-
age, with one of their top choices. When men are on the long side, they
either are unmatched or rank their partner only slightly better than a ran-
dom match. See figure 3 below for a comparison with the men’s average
rank of wives under RSD. Section IV provides simulation results indicat-
FIG. 1.—Percentage of men with multiple stable partners, in random markets with
40 women and a varying number of men. The main line indicates the average over 10,000 re-
alizations. The dotted lines indicate the top and bottom 2.5th percentiles.
13 Following an analysis very similar to the proof of lemma B.4(i) in the online appendix,
we can show that the men’s average rank of wives under RSD is, with high probability, at
least

ð1 2 εÞ n 1 k

n

� �
log

n 1 k

k

� �
and at most

ð1 1 εÞ n 1 k

n

� �
log

n 1 k

k

� �
:
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ing that theorem2 gives a good approximation for smallmarkets and that
the advantage of the short side persists under correlated preferences.
E. Special Cases: Small and Large Imbalances
To highlight two particular cases of interest, we present the following two
immediate corollaries. We first focus on markets with minimal imbal-
ance, where there is only one extra woman.
Corollary 1. Consider a sequence of randommatchingmarkets with

nmen and n1 1 women. Fix any ε > 0. With high probability, in every sta-
blematching, themen’s average rank of wives is nomore than ð1 1 εÞ log n,
the women’s average rank of husbands is at least n=ð1 1 εÞ log n, and the
fractions of men and women who have multiple stable partners are each
no more than ε.
The next case of interest is a randommatching market with a large im-

balance, taking k 5 ln for fixed l.
Corollary 2. For l > 0, consider a sequence of random matching

markets with jMj 5 n, jWj 5 ð1 1 lÞn. Fix any ε > 0. Define the constant
k 5 ð1 1 εÞð1 1 lÞlogð1 1 1=lÞ. We have that with high probability, in
every stable matching, the men’s average rank of wives is at most k, the
women’s average rank of husbands is at least n=ð1 1 kÞ, and the fractions
of men and women who have multiple stable partners are each no more
than ε.
FIG. 2.—Men’s average rank of wives under MOSM and WOSM in randommarkets with
40 women and a varying number of men. The lines indicate the average over 10,000 real-
izations.
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When there is a substantial imbalance in the market, the allocation is
largely driven by men’s preferences. For example, in a market with 5 per-
cent extra women, men will be matched, on average, with roughly their
thirdmost preferred woman. The women’s average rank of husbands un-
der WOSM is only a factor of ð1 1 kÞ=2 5 2:1 better than being matched
with a randomman. Thus, the benefit of being on the short side becomes
more extreme when the imbalance is bigger.14

We can examine welfare through fractiles, in addition to rank. In mar-
kets with nmen and n1 1women, on average,men receive a wife who is at
the (log n/n)th fractile of their preference list, and women receive a hus-
band who is at the (1/log n)th fractile of their preference list. Note that
both sides of the market asymptotically receive their top fractile as n
grows large; the rates of convergence are very different (see n. 8). In mar-
kets with nmen and (11 l)n women, even as n grows, women do not re-
ceive their top fractile. For examination of welfare in matching markets,
see subsequent work by Che and Tercieux (2014) and Yariv and Lee
(2014).
F. Implications for Strategic Behavior
In this section, we consider the implications of our results for strategic be-
havior in matching markets. Amatching mechanism is a function that takes
reported preferences ofmen andwomen and produces amatching. A sta-
ble matching mechanism is a matching mechanism that produces a match-
ing that is stable with respect to reported preferences. A matching mech-
anism induces a direct revelation game, in which each agent reports a
preference ranking and receives utility from his or her assigned partner.
Men-proposing DA (MPDA) is strategy-proof for men, but some women

may benefit frommisreporting their preferences.15 Demange et al. (1987)
show that a woman cannot profitably manipulate a stable matching mech-
anism if she has a unique stable partner. In a random unbalanced match-
ing market, most women will have a unique stable partner and therefore
cannot gain from misreporting their preferences.
Formally, we consider the following direct revelation game induced by

a stable matching mechanism. Each manm independently draws utilities
umðwÞ ∼ F for matching with each woman w. Symmetrically, each woman
w draws utilities uwðmÞ ∼ G for matching with each man m. We assume
that F, G are nonatomic probability distributions with finite support
½0, u�. Each agent privately learns his or her own preferences, submits a
14 As we would expect, k 5 kðlÞ is monotone decreasing in l and liml→∞ kðlÞ 5 1 1 ε.
15 A mechanism is said to be strategy-proof for men (women) if it is a dominant strategy

for every man (woman) to report preferences truthfully. Roth (1982) shows that no stable
matching mechanism is strategy-proof for both sides of the market.
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ranking to the matching mechanism, and receives the utility of being
matched with his or her assigned partner. We say that an agent reports
truthfully if he or she submits a ranked list of spouses in the order of
his or her utility of being matched with them.
Theorem 3. Consider any stable matching mechanism. Let there be

a sequence of random matching markets, indexed by n, with n men and
n 1 k women, for arbitrary k 5 kðnÞ ≥ 1. For any ε > 0, there exists n0

such that for any n > n0, it is an ε-Bayes-Nash equilibrium for all agents
to report truthfully.
Note that theorem 3 applies to any stable matching mechanism, re-

gardless of the stable matching it selects. While the theorem is stated
for large n, the simulations in Section IV show that there is little scope
for manipulation even in small markets.
Proof. For any d > 0, theorem 1 tells us that the expected fraction of

women with multiple stable partners is no more than d with probability
at least 12 d, for large enough n. Thus, the expected fraction of women
with multiple stable partners is bounded by 2d for large enough n. All
women are ex ante symmetric; and since preferences are drawn indepen-
dently and uniformly at random, the women are still symmetric after we
reveal the preference list of one woman. Therefore, the interim probabil-
ity that a woman hasmultiple stable partners, conditional on her realized
preferences, is equal to the expected fraction of women withmultiple sta-
ble partners and thus bounded by 2d. Choosing d ≤ ε=ð2uÞ guarantees
that any woman can gain at most ε by misreporting her true preferences
for large enough n. The argument for men is identical. QED
Using the stronger version of theorem 1 (theorem 1 in online app. B),

one can produce tighter bounds on the gains frommanipulation and ex-
tend the above result to utilities with unbounded support.
III. Proof Idea and Algorithm
This section presents the intuition for theorems 1 and 2. We first provide
intuition for the advantage of the short side in Section III.A. Our proof
(provided in online apps. A andB) follows a different andmore construc-
tive approach, which uses a new matching algorithm to trace the struc-
ture of the set of stablematchings.We present themain ideas of the proof
in Section III.B and the new matching algorithm in Section III.C.
A. Intuition for the Small Core and Advantage
of the Short Side
Suppose that there are n1 1 women. By the rural hospital theorem (Roth
1986), the same woman w is unmatched in all stable matchings. Thus, ev-
ery stable matching must also induce a stable matching for the balanced
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market that results from dropping w. A stable matching of the balanced
market remains stable after we add w only if all men prefer their assigned
match over w. Intuitively, a matching is more likely to satisfy this con-
straint when the men are better off. Typically only a few stable matchings
(that are all close to the MOSM of the balanced market) satisfy this con-
straint, and the core of the original market is small.
B. Sketch of the Proof
We prove our results by calculating both the MOSM andWOSM through
a sequence of proposals by men, as specified in algorithm 2 below. Since
men receive a low average rank, the run of the algorithm on a randomly
drawnmarket is a short and tractable stochastic process. By analyzing this
stochastic process we uncover the desired properties of the core.
Algorithm 2 calculates the WOSM through the use of rejection chains.

The algorithm maintains a stable matching, initiated to be the MOSM,
and in each phase attempts tomove to a stable matching that is more pre-
ferred by women. A phase starts by selecting a woman bw and having her
divorce her husband m. This triggers a rejection chain in which man m
continues to propose, possibly displacing other men who propose in turn.
We name the phase according to how the chain ends: (a) an improvement
phase ends with bw accepting a proposal from a man she prefers over m,
and (b) a terminal phase ends with a proposal to an unmatched woman.
An improvement phase finds a new stable matching that matches bw with
a partner she prefers over m. A terminal phase implies that m is bw’s most
preferred stable husband (and hence we roll it back before proceeding).
Once we have found a terminal phase for every woman, the algorithm is at
the WOSM and terminates.
Analyzing the run of the algorithm for markets of nmen and ð1 1 lÞn

women is simpler. In this case, a phase beginning with arbitrary bw is very
likely to be terminal: the probability that a man in the chain will propose
to an unmatched woman is roughly l=ð1 1 lÞ, while the probability that
he will propose to bw is of order 1/n. Thus, improvement phases are rare,
and most women will be matched with the same man under the MOSM
and WOSM.
The analysis for markets of n men and n 1 1 women is more involved

and requires us to use links between different rejection chains.16 Denote
by S the set of women for whom the algorithm has already found their
most preferred stable husbands. We initialize S to contain all unmatched
women (by the rural hospital theorem, they are unmatched in all stable
matchings). When a terminal phase visits each woman atmost once, each
16 In our proof, we simultaneously consider all possible values of k. However, we discuss
the special case of k 5 1 here for simplicity of exposition.
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woman in the chain can be added to S, as divorcing their husbands will
result in a subchain that is also terminal.17 When a new chain reaches
a woman w

0 ∈ S , that new chain must be terminal, since reaching w
0 ∈ S

implies that the new chain merges with a previous terminal chain. Thus,
the set S allows us to track rejection chains and how they merge together.
We first track the progress of the algorithm until the end of the first

terminal phase, which occurs with the first proposal to the unmatched
woman. Each proposal by a man has about 1/n chance to go to the un-
matched woman, and therefore, the first proposal to the unmatched
woman occurs after order n proposals. That terminal phase will involve
a chain of order

ffiffiffi
n

p
distinct women, who are all added to S.18 After this,

the likelihood that a proposal goes to a woman in S is substantially in-
creased, meaning that most proposals are part of terminal phases, and
the set S rapidly grows larger. Once S is large, almost every phase is termi-
nal, and almost all women are already matched with their most preferred
stable husband. The algorithm terminates when S 5 W is reached.
We calculate the men’s average rank of wives under the MOSM using

methods similar to those in Pittel (1989a), showing that the number of
proposals by men is roughly equal to the solution of the coupon collec-
tor’s problem. The men’s average rank under the WOSM is calculated
by adding the proposals during improvement phases of algorithm 2.
We deduce bounds on the women’s average rank of husbands from the
number of proposals each woman receives.
C. Matching Algorithm
This section presents algorithm 2, which calculates the WOSM from the
MOSM through a sequence of proposals by men. This algorithm can be
used to quickly calculate the WOSM when women are on the long side.
All algorithms in this section assume that there are strictly more women
thanmen (i.e., jWj > jMj). For proofs and further details, refer to online
appendix A.
For completeness, we first present the MPDA algorithm that outputs

the MOSM.
Algorithm 1 (Men-proposing deferred acceptance [MPDA]).
1. Every unmatched man proposes to his most preferred woman who

has not already rejected him. If no new proposal is made, output
the current matching.
17 If a chain includes a subchain that begins and ends with the same woman w 0, we call
that subchain an internal improvement cycle (IIC). An IIC is equivalent to a separate im-
provement phase for w 0, which can be cut out of the original chain. After all IICs are re-
moved, the chain of every terminal phase includes each woman at most once.

18 These are the women who remain after removal of IICs; cf. n. 17.
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2. If a women has multiple proposals, she tentatively keeps her most
preferred man and rejects the rest. Go to step 1.
We now present algorithm 2, which calculates the WOSM. It maintains
the most recent stable matching ~m and a set S of women whose most pre-
ferred stable match has already been found. In each phase a rejection
chain is initiated to check whether there is another stable matching pre-
ferred by women. The variablem is used to hold the proposingman and m

is used to hold the temporary assignment. Each rejection chain is tracked
using an ordered set V 5 ðv1, v2, ::: , vJ Þ of women. If a proposal is ac-
cepted by a woman in V, the algorithmupdates ~m to a new stablematching
that makes women better off. When a proposal is accepted by a woman
in S, the phase is terminal, and all the women in V are added to S. We
use the notation x ← y for the operation of copying the value of variable
y to variable x.
Algorithm 2 (MOSM to WOSM).
• Input: A matching market with n men and n 1 k women.
• Initialization: Run the MPDA algorithm to get the men-optimal
stable matching m. Initialize S to be the set of women unmatched
under m. Select any bw ∈ WnS .

• New phase:

1. Set ~m← m. Set v1 ← bw and V ← ðbwÞ.
2. Divorce: Set m ← mðbwÞ and have bw reject m.
3. Proposal: Manm proposes to his most preferred woman w who has

not already rejected him.19

4. Woman w’s decision:

a. If w ∉ V and w prefers m(w) over m, or if w ∈ V and w prefers
~mðwÞ over m, then w rejects m. Go to step 3.

b. If w ∉ S [ V and w prefers m over m(w), then w rejects her cur-
rent partner. Set m 0 ← mðwÞ, mðwÞ←m. Append w to the end of
V. Set m ←m 0 and go to step 3.

c. New stable matching: If w ∈ V and w prefers m over ~mðwÞ, then
we have found a stable matching. If w 5 bw 5 v1, set mðbwÞ←m.
Select bw ∈ WnS and start a new phase from step 1. If w 5 v‘
for ‘ > 1, record her current husband as m 0 ← mðwÞ. Call the
set of all proposals made after the proposal of m0 to w an IIC.
Set mðwÞ←m and update ~m for the women in the loop by setting
~mðvjÞ← mðvjÞ for j 5 ‘, ‘ 1 1, ::: , J . Remove v‘, :: , vJ from V, set
19 In markets with complete preferences and strictly more women than men, such a
woman always exists. For general markets, if m prefers to be unmatched over any woman
who has not already rejected him, the algorithm continues directly to step 4(d).
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the proposer m ←m 0, and return to step 3, in which m (earlier
m0) will again propose to w.

d. End of terminal phase: Ifw ∈ S and w prefersm over m(w), then
restore m← ~m and add all the women in V to S. If S 5 W, termi-
nate and output ~m. Otherwise, select bw ∈ WnS and begin a
new phase from step 1.
IV. Computational Experiments
This section presents simulation results that complement our theoretical
results. We first present simulation results for small markets and test the
accuracy of estimates based on our theoretical findings. We then investi-
gate the effects of correlation in preferences and test the robustness of our
results. Finally, we present simulation results for unbalanced many-to-one
matching markets.
A. Numerical Results for Our Model
The first computational experiment illustrates the sharp effect of imbal-
ance in a small market. We consider markets with 40 women and a vary-
ing number of men, from 20 to 60men. For eachmarket size we simulate
10,000 realizations by drawing uniformly random complete preferences
independently for eachagent. For each realizationwe compute theMOSM
and WOSM. Figure 1 (Sec. II) reports the fraction of men who have mul-
tiple stable partners (averaged across realizations, as well as the top and
bottom 2.5th percentiles); this fraction is small in all unbalanced markets.
Figure 3 reports an average across realizations of the men’s average

rank of wives under the MOSM and WOSM as well as under RSD.20 The
results for the balanced market (40 men and 40 women) replicate the pre-
vious analysis by Pittel (1989a) and Roth and Peranson (1999). But in any
unbalanced market, the men’s average rank of wives is almost the same
under the MOSM and WOSM. When there are fewer men than women
(i.e., fewer than 40 men), the men’s average rank of wives under any sta-
ble matching is almost the same as under RSD, with most men receiving
one of their top choices. When there are more men than women in the
market, the men’s average rank of wives is not much better than 20.5,
which would be the result of a random assignment.
Tables 1 and 2 report simulation results for markets with varying size

and imbalance. Table 1 reports the men’s average rank of wives under
20 The women’s average rank of husbands is symmetrically given by switching the num-
ber of men and women. In the RSD mechanism men are ordered at random, and each
man chooses his favorite woman who has yet to be chosen (thus RSD ignores women’s pref-
erences).
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the MOSM andWOSM, showing the sharp effect of imbalance across dif-
ferent market sizes. Under both the MOSM and WOSM, the men’s aver-
age rank of wives is large when there are strictly fewer women (cols.210,
25, 21) and small when there strictly fewer men (cols. 1, 2, 3, 5, 10). In
addition, table 1 reports theoretical estimates of the average rank based
on the asymptotic results in Section II. The estimate from our theorem is
asymptotically accurate for the men’s average rank of wives when men
are on the short side, while it is only an asymptotic lower bound when
men are the long side (see online app. D for details). Observe that when
men are on the short side of the market (the right side of the table), our
estimate gives a surprisingly good approximation. When men are on the
long side (the left side of the table), our estimate is only about 10–25 per-
cent below the true values. Table 2 presents the percentage of men who
have multiple stable partners. This percentage is large in balanced mar-
kets but is small in all unbalanced markets.
Using the matching algorithm from Section III, we were able to run

simulations of rather large unbalanced matching markets. Table 3 pro-
vides numerical results of 1,000 draws of matching markets of different
sizes. The results show that in markets of any size, a slight imbalance
leads to a small core and agents on the short side are typically matched
with one of their top choices.
FIG. 3.—Men’s average rank of wives under MOSM and WOSM in randommarkets with
40 women and a varying number of men. The main lines indicate the average over matched
men’s average rank of wives in all 10,000 realizations. The dotted lines indicate the top and
bottom 2.5th percentiles of the 10,000 realizations. The line labeled RSD gives the men’s
average rank under the RSD mechanism.
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B. Size of the Core under Correlated Preferences
This section presents simulation results to examine the effects of corre-
lation in preferences on the size of the core. We simulated a large class of
distributions and found a large core only under balanced markets with
TABLE 1
Men’s Average Rank of Wives under the MOSM and WOSM

for Different Market Sizes

jWj 2 jMj
jMj 210 25 21 0 1 2 3 5 10

100:
MOSM 29.5 27.2 20.3 5.0 4.1 3.7 3.4 3.0 2.6
WOSM 30.1 28.2 23.6 20.3 4.9 4.1 3.6 3.2 2.6
EST 25.3 22.9 17.5 4.7 4.0 3.6 3.2 2.6

200:
MOSM 53.6 48.1 35.3 5.7 4.8 4.3 4.1 3.7 3.1
WOSM 54.7 49.9 41.0 35.5 5.7 4.7 4.4 3.8 3.2
EST 45.7 40.8 31.5 5.3 4.7 4.3 3.8 3.2

500:
MOSM 115.8 102.6 75.9 6.7 5.7 5.3 5.0 4.5 3.9
WOSM 118.0 106.3 86.6 76.2 6.7 5.7 5.3 4.7 4.0
EST 98.2 87.6 69.0 6.2 5.5 5.2 4.7 4.0

1,000:
MOSM 203.8 181.4 136.2 7.4 6.4 6.0 5.7 5.2 4.6
WOSM 207.5 187.6 155.1 137.3 7.4 6.5 6.0 5.4 4.7
EST 175.2 157.3 126.2 6.9 6.2 5.8 5.3 4.7

2,000:
MOSM 364.5 324.2 249.6 8.1 7.1 6.7 6.3 5.9 5.3
WOSM 370.8 334.4 280.7 249.1 8.1 7.1 6.6 6.1 5.4
EST 314.6 284.7 232.3 7.6 6.9 6.5 6.0 5.3

5,000:
MOSM 793.1 713.5 560.0 9.1 8.1 7.6 7.3 6.8 6.2
WOSM 804.7 732.8 622.5 560.2 9.1 8.1 7.6 7.0 6.3
EST 690.5 631.1 525.2 8.5 7.8 7.4 6.9 6.2
Note.—The numbers for each market size are averages over 1,000 realizations. A man’s
most preferred wife has rank 1, and a larger rank indicates a less preferred wife. EST is the the-
oretical estimate of themen’s average rank based on theorem 2 (see online app. D for details).
TABLE 2
Percentage of Men Who Have Multiple Stable Partners

for Different Market Sizes

jWj 2 jMj
jMj 210 25 21 0 1 2 3 5 10

100 2.1 4.1 15.1 75.3 15.4 9.5 6.5 4.5 2.3
200 2.2 3.8 14.6 83.6 14.6 8.0 6.2 4.1 2.1
500 2.0 3.8 12.6 91.0 13.1 7.1 5.5 3.6 2.0
1,000 1.9 3.5 12.3 94.5 12.2 7.2 5.1 3.4 2.0
2,000 1.8 3.1 11.1 96.7 11.1 6.1 4.8 2.9 1.7
5,000 1.5 2.7 10.1 98.4 10.2 6.0 4.3 2.8 1.5
Note.—The numbers for each market size are averages over 1,000 realizations.
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little correlation in preferences.21 Our simulations suggest that the core
generally becomes smaller as preferences become more correlated, al-
though there are examples of the opposite.22

We present results on preferences generated from the following ran-
dom utility model, adapted from Hitsch et al. (2010). Each agent ℓ has
two characteristics, xA

‘ and xD
‘ . The utility of agent i for being matched

with agent j is given by

uið jÞ 5 bxA
j 2 gðxD

i 2 xD
j Þ2 1 εij , (1)

where εij is an idiosyncratic term for the pair (i, j) independently drawn
from the standard logistic distribution. We use xA

i as a vertical quality that
is desirable for all agents, with xA

i ∼ U ½0, 1� drawn independently for
each agent. We use xD

i as a location, with xD
i ∼ U ½0, 1� drawn indepen-

dently for each agent. The values of the coefficient g determine agents’
preferences to be close to/far from those of their partner. The same val-
ues of the coefficients b, g are used for both men and women.
Whenb 5 g 5 0, preferences are drawn independently and uniformly

at random. As b increases (keeping g fixed), preferences become more
correlated; and if b→∞, all men will have the same preferences over
TABLE 3
Men’s Average Rank in Different Market Sizes with a Small Imbalance

jWj 2 jMj 5 11 jWj 2 jMj 5 110

Men’s Average
Rank under

Men’s Average
Rank under

jMj MOSM WOSM

% Men with
Multiple Stable

Partners MOSM WOSM

% Men with
Multiple Stable

Partners

10 2.0 (.4) 2.3 (.6) 13.8 (18.8) 1.3 (.2) 1.3 (.2) 1.2 (5.1)
100 4.1 (.7) 4.9 (1.1) 15.2 (13.0) 2.5 (.3) 2.6 (.3) 2.3 (3.1)
1,000 6.5 (.8) 7.4 (1.3) 11.9 (10.2) 4.6 (.3) 4.7 (.3) 1.9 (2.0)
10,000 8.8 (.8) 9.8 (1.3) 9.4 (8.3) 6.9 (.3) 7.0 (.3) 1.5 (1.5)
100,000 11.1 (.8) 12.1 (1.3) 7.7 (6.6) 9.1 (.3) 9.3 (.3) 1.1 (1.0)
1,000,000 13.4 (.8) 14.4 (1.3) 6.6 (6.0) 11.5 (.3) 11.6 (.3) .8 (.8)
21 We did fi
balanced ma
each pair (m
examined th

22 It is pos
creases the si
dently and i
hence a large
nd somewhat unnatural correlation stru
rkets, e.g., when generating preferenc
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sible to construct specific examples suc
ze of the core. For example, if there are
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. However, for all suc
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women (and symmetrically). Taking g ≠ 0 generates alignment between
um(w) and uw(m).23

Figure 4 shows the size of the core for different levels of imbalance
and a range of coefficient values. For each market we simulate 2,000 re-
alizations and report the average percentage of men with multiple stable
partners.24 We consider markets with 40 women and either 40, 41, 45, or
60 men, b ∈ ½0, 20� and g ∈ ½220, 20�. Observe that correlation tends
to reduce the size of the core (see nn. 21 and 22). The only markets that
have a large core are balanced markets with low levels of correlation in
preferences. We interpret these results as complementary to our theoret-
ical results, giving additional suggestive evidence that general preference
distributions are likely to generate a small core.
C. Robustness of the Short Side Advantage
Theorem 2 shows that if there are strictly fewer men than women and
preferences are complete and uncorrelated, then men will have a large
advantage: men will be matched with one of their top choices, while
women will be matched with a husband who is not much better than a
random man. But this result may not hold when preferences are corre-
lated; for example, if all men have the same preferences, the top-ranked
woman must be matched with her top choice (regardless of the number
of men and women). We therefore conduct numerical experiments to
investigate the extent of the men’s advantage when there are fewer men
and preferences are correlated.
Figure 5 reports the results for different markets generated using the

utility model from Section IV.B. Each panel reports the men’s average
rank of wives under different values of b, g for markets with 40 women
and from 20 to 60 men. Each panel contains as a reference point the
graph for b 5 g 5 0 (which replicates fig. 3). We plot the men’s average
rank only under the MOSM, as the men’s average rank under the WOSM
is almost identical (it differs only for balanced markets).
Panel A shows results withg 5 0 anddifferent values of b as indicated. A

higher value of bmakes preferences of agents on the same sidemore cor-
related. The short side of themarket retains an advantage for small values
of b. When b is very large, all men have almost the same preferences over
women, and therefore the men’s average rank is ½minðjMj, jWjÞ 1 1�=2.
Panel B shows results for varying values of g, holding b 5 0. If g > 0,

both agents prefer a close partner, generating alignment between the
23 See Yariv and Lee (2014) for analysis of fully aligned random preferences.
24 We also measured the size of the core using the difference/ratio between the men’s

rank of wives underMOSM and underWOSM. Thesemeasures produce very similar results
and are therefore omitted.



FIG. 4.—The percentage of men with multiple stable partners for correlated prefer-
ences, generated as per equation (1): A, 40 men; B, 41 men; C, 45 men; D, 60 men. In each
plot the z-axis (vertical and color) gives the percentage of agents with multiple stable part-
ners, the x-axis is the value of the coefficient g (ranging from 220 to 20), and the y -axis is
the value of coefficient b (ranging from 0 to 20). The number of men is 40, 41, 45, or 60, as
labeled for each plot. In all markets there are 40 women.
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FIG. 4(Continued)
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FIG. 5.—Men’s average rank of wives under MOSM for correlated preferences, gener-
ated as per equation (1), with 40 women and a varying number of men. Panel A plots the
average rank when g 5 0 and b ranges from 0 to 100, with different lines corresponding
to different values of b. Similarly, panel B plots the average rank when b 5 0 and g ranges
from 0 to 1,000. Panel C plots the average rank for b 5 g.
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preferences of men and women, as well as correlation in the preferences
of men. As g increases, the men’s average rank of wives increases in mar-
kets with fewer than 40 men, but it decreases in markets with more than
40 men since matched men are likely to be favorably ranked by their
wives and therefore likely to rank their wives favorably.
Panel C shows the results when taking b 5 g, and each line is labeled

by the common value for both coefficients. The advantage of the short
side gradually decreases as correlation increases but is still evident even
when there is a sizable correlation.
Put together, we find that for low levels of correlation, men tend to re-

ceive a lower average rank when there are fewer men. This advantage is
continuously attenuated as agents’ preferences become more correlated.
We further simulate markets in which agents find some potential part-

ners to be unacceptable. For each manm and woman w we independently
draw umðwÞ ∼ U ½0, 1�, where m’s utility of remaining single is uM . Thus w
is unacceptable to m if umðwÞ < uM , and if uM 5 0:33, there is a 33 per-
cent chance that a man will find a potential wife to be unacceptable.
Preferences for women were drawn analogously, with uW being the utility
of remaining single. Figure 6 reports the men’s average rank of wives un-
der the MOSM for markets with 40 women and from 20 to 60 men and
ðuM , uW Þ ∈ f0, :33, :66g2.25 The shape of the marker indicates the value
of uM , and the shade indicates the value of uW . The number of matched
agents is at least 85 percent of minðjMj, jWjÞ in all reported markets.
We find that only the selectivity of the long side matters: the lines merge
according to shade when there are more women and according to shape
when there are more men. The benefit of the short side is still apparent,
but it is continuously attenuated as the long side becomes more selective.
D. Many-to-One Markets
We run computational experiments to investigate the effect of imbal-
ance in many-to-one matching markets, in which colleges have respon-
sive preferences (Roth 1985) and each college is small relative to the size
of the market (see online app. C for further discussion). For each stu-
dent we independently draw a complete preference list over colleges
uniformly at random. For each college we independently draw a com-
plete preference list over individual students uniformly at random.
Denote by S the set of students, by C the set of colleges, and by q the

number of seats in each college. We say that a market is unbalanced if
the number of students differs from the total number of seats, that is,
25 The men’s average rank under WOSM is omitted as it is almost identical in all unbal-
anced markets.
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jSj ≠ jCj � q. For each market size we draw 1,000 realizations and com-
pute the extreme stable matchings: the student-optimal stable matching
(SOSM) and the college-optimal stablematching (COSM). The students’
average rank of their colleges (under both SOSM and COSM) is defined
as before. The colleges’ average rank of students is computed by averag-
ing the rank of students in all filled seats.
Tables 4, 5, and 6 report simulation results for markets with an overall

number of seats of q � jCj 5 100, 200, 500, 1,000, with a varying number
of seats per college (q5 2, 5) and a varying number of students jSj (vary-
ing from q jCj 2 10 to q jCj 1 10). As in the one-to-one markets, we find
that there is a big difference between the SOSM and COSM when the
market is balanced, but in unbalanced markets the SOSM and COSM
give almost the same average rank to both colleges and students. The per-
centage of students with multiple stable matches is large when the mar-
ket is balanced, but it is small under imbalance.
If we increase q while holding q � jCj and jSj fixed, we find that the

core shrinks, and the college’s average rank increases. Note that an in-
crease in q effectively makes preferences over seats more correlated,
and our findings here resemble the effects of increased correlations re-
ported in Sections IV.B and IV.C. The average rank of students is not
FIG. 6.—Men’s average rank of wives for various levels of imbalance and selectivity in
random markets with 40 women and a varying number of men. Each of the 3 � 3 lines in-
dicates a different level of selectivity for men and women, marked by shade and shape. The
shape indicates the selectivity of men, giving the chance a man will find a potential wife to
be unacceptable. The shade indicates the selectivity of women, giving the chance that a
woman will find a potential husband to be unacceptable.
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directly comparable across different values of q, since the length of the
students’ preference list changes.
V. Discussion
Competition has been at the heart of economic theory since Edgeworth
(1881) and may have a stark effect as in the famous left glove, right glove
example by Shapley and Shubik (1969). We show that there is a similar
stark effect of competition in randommatchingmarkets, despite the het-
erogeneity of preferences and the lack of monetary transfers. This allows
us to characterize stable matchings and to provide an explanation as to
why small cores are empirically ubiquitous.
Under more general preference distributions the structure of stable

matchings may be more involved. As an example, consider a tiered one-
to-one market with 30 workers and 40 firms in two tiers: 20 firms are
“top” and 20 firms are “middle.” Preferences are drawn uniformly at ran-
dom, except that every worker prefers any top firm over any middle firm.
TABLE 4
Students’ Average Rank of Colleges in the SOSM and COSM

for Different Markets

jSj 2 jCj � q

jCj � q 210 25 22 21 0 1 2 5 10

100 (50�2):
SOSM 1.8 2.0 2.4 2.7 3.1 10.4 12.0 14.4 16.3
COSM 1.8 2.1 2.6 3.1 10.5 12.0 13.0 14.9 16.6

200 (100�2):
SOSM 2.1 2.4 2.8 3.1 3.6 17.8 20.4 24.7 28.1
COSM 2.2 2.5 3.1 3.5 17.9 20.6 22.3 25.6 28.7

500 (250�2):
SOSM 2.6 2.9 3.4 3.6 4.1 38.0 43.3 51.6 59.1
COSM 2.6 3.0 3.6 4.1 38.2 43.5 46.9 53.4 60.2

1,000 (500�2)
SOSM 3.0 3.3 3.8 4.0 4.5 69.1 78.0 91.7 103.7
COSM 3.0 3.4 4.0 4.5 68.5 78.1 83.8 94.6 105.2

100 (20�5):
SOSM 1.3 1.5 1.6 1.7 1.9 4.5 5.1 6.0 6.8
COSM 1.3 1.5 1.7 1.9 4.5 5.1 5.5 6.2 6.9

200 (40�5):
SOSM 1.5 1.7 1.8 2.0 2.1 7.5 8.5 10.2 11.6
COSM 1.5 1.7 1.9 2.1 7.6 8.5 9.3 10.6 11.8

500 (100�5):
SOSM 1.8 1.9 1.1 2.3 2.4 15.6 17.7 21.0 23.9
COSM 1.8 2.0 2.2 2.4 15.6 17.8 19.1 21.7 24.3

1,000 (200�5):
SOSM 1.9 2.1 2.3 2.5 2.7 27.7 31.4 36.8 41.6
COSM 2.0 2.2 2.5 2.6 28.0 31.4 33.8 38.0 42.3
Note.—A student’s most preferred college has rank 1, and a larger rank indicates a less
preferred college.
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Stable matchings can be decomposed to a stable matching between the
top 20 firms and the 30 workers and a stable matching between the re-
maining 10 unmatched workers and the 20 middle firms. Applying our
results to each part implies that the core is small, and stable matchings
can roughly be described by the 20 top firms choosing their worker and
TABLE 5
Colleges’ Average Rank of Students in the SOSM and COSM for DifferentMarkets

jSj 2 jCj � q

jCj � q 210 25 22 21 0 1 2 5 10

100 (50�2):
SOSM 33.4 31.5 28.9 27.1 24.5 7.1 5.9 4.7 3.9
COSM 32.9 30.6 26.8 23.9 7.2 6.0 5.4 4.5 3.8

200 (100�2):
SOSM 61.3 56.8 50.9 48.3 42.8 8.5 7.2 5.7 4.8
COSM 60.4 55.1 47.4 42.9 8.5 7.2 6.5 5.4 4.6

500 (250�2):
SOSM 134.7 123.1 110.3 103.3 92.4 10.0 8.6 7.0 6.0
COSM 132.6 119.1 102.9 92.7 10.1 8.6 7.9 6.8 5.8

1,000 (500�2):
SOSM 242.3 220.4 199.1 188.3 168.1 11.1 9.6 8.0 7.0
COSM 238.7 213.9 187 169.4 11.2 9.6 8.9 7.8 6.9

100 (20�5):
SOSM 38.1 36.9 34.8 33.4 31.5 13.4 11.3 9.0 7.5
COSM 37.8 36.3 33.2 31.2 13.4 11.3 10.3 8.6 7.3

200 (40�5):
SOSM 72.2 68.1 63.3 60.5 56.4 16.1 13.8 11.0 9.3
COSM 71.4 66.5 60.2 56.4 16.1 13.8 12.5 10.6 9.1

500 (100�5):
SOSM 162.6 152.1 140.8 132.7 123.7 19.4 16.8 13.8 11.9
COSM 160.7 148.4 133.9 123.7 19.5 16.7 15.5 13.3 11.6

1,000 (200�5):
SOSM 300.0 278.6 256.8 244.5 229.3 22.1 19.1 16.0 13.9
COSM 296.7 272.3 244.7 228.4 21.9 19.2 17.7 15.5 13.7
Note.—A college’s most preferred student has rank 1, and a larger rank indicates a less
preferred student.
TABLE 6
Percentage of Students Who Have Multiple Stable Matches

jSj 2 jCj � q

jCj � q 210 25 22 21 0 1 2 5 10

100 (50�2) 1.8 3.4 7.8 12.4 70.7 14.1 8.4 3.9 2.1
200 (100�2) 1.8 3.3 7.3 11.4 79.8 14.1 8.6 4.0 2.2
500 (250�2) 1.7 3.4 6.9 10.4 89.0 12.7 7.9 3.7 2.0
1,000 (500�2) 1.6 3.0 6.2 10.2 93.3 11.7 7.0 3.2 2.0
100 (20�5) 1.2 1.9 5.0 6.8 57.5 13.8 7.9 3.9 1.7
200 (40�5) 1.3 2.6 5.2 7.1 71.4 13.1 8.5 3.9 2.1
500 (100�5) 1.2 2.6 5.0 6.8 84.1 12.5 7.2 3.7 2.1
1,000 (200�5) 1.1 2.3 4.8 6.7 90.3 12.0 7.1 3.4 1.8
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the remaining 10 workers choosing their firm from among the middle
firms. A similar argument can be used to characterize stable matchings
in any tiered market.
In online appendix C, we discuss how to extend our analysis to many-

to-one markets between colleges and students, assuming that colleges
have responsive preferences and that each college is small relative to
the size of the market. The sharp effect of competition is also present in
these markets: whenever there is even a slight difference between the
number of seats and the number of students in the market, the core is
small, and the short side will “choose.”
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Erratum

Erratum: “Unbalanced Random Matching
Markets: The Stark Effect of Competition”
Itai Ashlagi
Stanford University
Yash Kanoria
Columbia University
Jacob D. Leshno
University of Chicago

There is an error in “Unbalanced RandomMatching Markets: The Stark
Effect of Competition” by Itai Ashlagi, Yash Kanoria, and Jacob D. Leshno,
published in the February 2017 issue of the Journal of Political Economy
(vol. 125, no. 1). The formulas in the middle of page 76 are incorrect.
The numerator in the lower formula should be “RMEN(WOSM)” instead
of “RMEN(MOSM).”
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