
CS 357:   Algorithmic Game Theory
Lecture 9:  Markets Without Money
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• HW 4 due today
• Lecture notes reviewing topics so far posted

• Have not been reviewed  thoroughly, 
so there may be typos

• Double check with lectures and let 
me know 

• Exam 1 on Friday March 14

• Short-"ish" questions, mostly HW 
style questions with one or two 
open/ended answers or proofs

• Cover everything until last week:  
review HWs, assignments, readings 
and lectures to prepare

• Closed book but can bring prepared 
notes (no more than 5 pages) Week 1: Game Theory

Week 2:  Single-Item Auctions

Week 4:  VCG and Sponsored 
Search Auctions

Week 3: Myerson & Single 
Parameter Auctions

Week 5: Centralized Markets  
w/o Money & Exam 1

Week 6: Centralized Markets  
w/o Money 

Spring Break 

Announcements



• Paper Eval #2 next week (March 21)
• In groups like last time
• If planning to miss, reach out

• Assignment 3 due week after Spring Break 
(April 11)

• No work due over break
• Expected to finish the week after

Week 1: Game Theory

Week 2:  Single-Item Auctions

Week 4:  VCG and Sponsored 
Search Auctions

Week 3: Myerson & Single 
Parameter Auctions

Week 5: Centralized Markets  
w/o Money & Exam 1

Week 6: Centralized Markets  
w/o Money Pt 2 

Spring Break 

Announcements:   Looking Ahead



Story So Far :  Mechanism Design w Money

Centralized Markets Money Transfer

Goal.   Align global objectives (social optimal outcome) 
with participant objective (maximize utility) using payments.

Centralized: 
transactions are 

decided by a 
central hub 



Next:  Mechanism Design without Money

Centralized Markets Money Transfer

We will revisit role of money in decentralized systems.



Later :  Decentralized Systems

Selfish behavior in 
decentralized 

markets with or 
without money



Markets without Money
Designer's Goal:  Allocate items to ensure good global guarantees (e.g. welfare)
Agent's Goal:  Report private preferences so as to maximize their utility.

 agents with private 
preferences

n

Goods to be allocated



Markets without Money
Designer's Goal:  Allocate items to ensure good global guarantees (e.g. welfare)
Agent's Goal:  Report private preferences so as to maximize their utility.

 agents with private 
preferences

n

Goods to be allocated

Payments so far were a way to enforce strategyproof mechanisms



Markets without Money
Designer's Goal:  Allocate items to ensure good global guarantees

Agent's Goal:  Report private preferences that achieve the best outcome

 agents with private 
(ordinal) preferences
n

Goods to be allocated

What are good global guarantees when agents have "ordinal" utilities?



• Many domains money transfer is either infeasible/inappropriate/illegal
• Problem domains without money?

• Matching students to courses
• Matching students to school/ colleges/ dorms
• Matching doctors to hospitals 

• Sharing resources or barter markets:
• Exchanging goods or services

• Social decision making:
• Voting to elect a leader, a committee or an outcome

Markets without Money

Domain of AGT where 
TCS truly shines!



Markets without Money
One Sided Markets

Two Sided Markets

Exchange based

No exchange



One-Sided Market:  Assignment Problems
Designer's Goal:  Assignment of items to agents is Pareto optimal 

Agent's Goal:  Report private preferences that achieve the best outcome

 agents with ordered 
preferences

n

Pareto optimality:  An outcome  is Pareto optimal if there is no outcome  and 
where every agent does as well as in  and some agent does strictly better.

O O′￼

O

College Dorms



• One-sided allocation or assignment problems:

• Assigning students to dorms

• Offices to employees

• Tasks to volunteers 

• Model.  We have  agents and  items 

• Agents have strict preference ordering over the items

• Feasible assignment: matching between items and agents

• Goal.  Find a Pareto optimal assignment  (means no other assignment 
can make an agent better off without making another agent worse off)

n m

One-Sided Assignment Problem



One-Sided Market:  Assignment Problems
Designer's Goal:  Assignment of items to agents is Pareto optimal 

Agent's Goal:  Report private preferences that achieve the best outcome

 agents with ordered 
preferences

n

Discussion Question.  How is this typically done based on your experience?

College Dorms



One-Sided Matching Example

1 > 3 > 2

1 > 2 > 3

1 > 2 > 3

Zoe

Chris

Private  
Preferences

1

3

2
How do we matching 
students to dorms?



• Most housing allocation algorithms look something like this:
• Asks agents to report their preferences over items
• Choose an ordering of all agents (lottery order)

• Often based on some metrics are considered "fair", e.g., seniority, 
years of service to college, family size, etc

• Go in order, assign each agent their favorite item that is still remaining
• Example.  Faculty housing, mini lottery for dorms (at Williams)
• This is a good mechanism? 

• Strategyproof, Pareto optimal?

One-Sided Assignment Problem



• Each of the  agents submit a ranked ordering over  items

• Each agent is assigned a "lottery index" from  

• For 

• Assign  their favorite choice among options still available

• Lemma.  SD algorithm is strategyproof & Pareto optimal.

n m

{1,2,…, n}

i = 1,2,…, n

i

Serial Dictatorship (SD)



• Each of the  agents submit a ranked ordering over  items

• Each agent is assigned a "lottery index" from  

• For 

• Assign  their favorite choice among options still available

• Lemma.  SD algorithm is dominant strategyproof & Pareto optimal.
• Proof Outline (Truthful reporting is dominant strategy).

• Cannot control lottery order
• Given lottery order, truthful reporting obtains the best possible 

outcome
• No incentive to deviate (regardless of other's preferences)

n m

{1,2,…, n}

i = 1,2,…, n

i

Serial Dictatorship (SD)



• Each of the  agents submit a ranked ordering over  items

• Each agent is assigned a "lottery index" from  

• For 

• Assign  their favorite choice among options still available

• Lemma.  SD algorithm is dominant strategyproof & Pareto optimal.
• Proof Outline (Why Pareto optimal).

• Idea:  show no other assignment can Pareto dominate
• Any other assignment must make some agent worse off nces)

n m

{1,2,…, n}

i = 1,2,…, n

i

Serial Dictatorship (SD)



• Lemma.  SD algorithm produces the unique Pareto optimal 
outcome.

• Proof.  Let  be an assignment where no agent is worse off than in 

• If any agent is worse off in  it cannot Pareto dominate !

• Claim:  Any such  is identical to 

• Suppose  is the same as  until step 

• Consider agent at step ,   gives  their favorite among 
remaining items

•  must do the same to make them not worse off

• Thus  is the unique Pareto optimal outcome

M′￼ M

M′￼ M

M′￼ M

M′￼ M i = k

i = k + 1 M i

M′￼

M

Serial Dictatorship (SD)



• Serial dictatorship seems great:  Pareto optimal and strategyproof
• Any criticism? 

• Can be unfair if priority order between agents is not natural
• Random-serial-dictatorship (RSD) 

• Run SD on a ranked ordering that is sampled uniformly at 
random from all possible orderings

Takeaways



• What happens if we restrict the # items each agent can rank?
• Course registration (can only preregister for so many courses)
• Truthfulness is no longer a dominant strategy
• Preferences now depending on the order in the lottery

• Strategizing is now all about guessing the lottery order & other's 
preferences

Variants:  Shortlists 



• What if students have to give up their current dorm to participate
• (Individually rational.) Participant's utility of outcome is at least as. 

much as if they did not participate
• Is this individually rational if participants already have a house?

Variants:  House Allocation with Tenants



Variants:  School Choice with Different Priorities



Paper Eval #2:  Case Study of School Choice
• Will post discussion and analysis questions 
• Work in groups and discuss/present next Friday (March 21)

• Last Friday before Spring Break
• If planning on missing class, reach out in advance
• Schedule a time to meet to discuss/present one on one



• Schools/colleges may not have "preferences" like individuals
• But they may have "priorities" (milder requirement) 

• Based on ranking on a standardized test
• Based on institutional priorities
• Based on distance/socio-economic states, etc

• Still, frequently two-sided algorithms like deferred acceptances is used

One-Sided vs Two-Sided



• Most common algorithm:  deferred acceptance 
• Others:  variants of serial dictatorship
• Not used:  top-trading cycle 

• As you read the paper,  think about why (we'll discuss)
• Where it has proved extremely useful:

• Exchange markets like kidney exchange

School Choice Algorithms



Two-Sided Matching Markets



• Consider a two-sided market:

• A set  of  hospitals, a set  of  students 
• Each hospital has a complete and strict preference ranking of 

students
• Each student has a complete and strict preference ranking of 

hospitals

• Goal.  A perfect matching  that is stable (has no blocking pairs)

• A hospital  and student  form a blocking pair   in a 
matching  if  prefers  to its current match in  and  prefers 
 to its current match in 

H n S n

M

h s (h, s)
M h s M s

h M

Two-Sided Markets



Stylized History:  
the "Stable Marriage" Problem

The Tinder algorithm explained: Vox

The Dating Market:  Medium Dating apps are awful. But this algorithm offers just one match: your 
“backup plan.” - Vox



1962, The American Mathematical Monthly 

1992

2003

2018

2008

Stylized Model of "Marriage" or "Dating"



• In 1900s matching medical residents to hospitals was decentralized 

• Increasingly competitive


• By the 1940s, appointments were often made as early as the 
beginning of the junior year of medical school

History of Stable Matching 

"Who Gets What and Why" by A Roth

The market for law school graduate is also known for these problems. 
Roth in this article “Who Gets What And Why” quotes a law 
school student who in 2005, on a flight from her 1st interview to 2nd 
interview, got 3 voicemail messages: the 1st extending an offer from 

where she just interviewed; the 2nd to urge her to return the call soon; 
and the 3rd to rescind the offer.  Her flight was only 35 mins long!



• In 1900s matching medical residents to hospitals was decentralized 

• Increasingly competitive


• By the 1940s, appointments were often made as early as the 
beginning of the junior year of medical school


• In 1945, a variant of deferred acceptance implemented by AAP 
(American Associated of Pediatrics) and NRMP (National 
Resident Matching program) to match residents to hospitals


• This was the invention of "the match"

Why have Centralized Markets

"The Origins, History, and Design of the Resident Match" by A Roth



Nobel Prize 2012: Shapley & Roth



• Empirical evidence in support

• In UK in the 60s, residency programs decided to move from a 
decentralized system to a centralized clearinghouse

• The details of the implementation were left to individual regions 
• Roth looked at data from 7 regions

• Two followed a stable implementation; they remain in use today
• Five regions implemented unstable variants, 3 of which did not 

survive long (due to poor participation and negotiations outside the 
system)

Why Stability: The Story of NRMP



• Input:   applicants 
and  jobs, complete 
preference lists

n
n

Classic Stable Matching Problem

• Output: a perfect 
matching  that is 
stable (no applicant and 
job prefer each other to 
their match)

M
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Classic Stable Matching Problem
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Unstable pair:  



Classic Stable Matching Problem

[Gale Shapley 1952] A perfect stable matching always exists!
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• Proceeds in rounds

• Each unmatched 

applicant "proposes" to 
their most preferred job


• jobs retain the best 
proposal they have 
received & reject others


• Matching is finalized when 
each applicant is matched

Deferred Acceptance (DA) Algorithm

[Gale Shapley 1952] A perfect stable matching always exists!
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Classic Stable Matching Problem
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Classic Stable Matching Problem
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Classic Stable Matching Problem
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Classic Stable Matching Problem
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Classic Stable Matching Problem
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Stable Matching Found

• Output matching is applicant optimal and job pessimal 



Deferred Acceptance Algorithm



Deferred Acceptance Properties
Lemma 1.  DA algorithm always produces a stable matching.

Proof. (By contradiction) Let  be the resulting matching. Suppose 
 such that  and

•  prefers  over  and  prefers  over  

Thus  must have offered to  before 

• Either  broke the match to  at some point for some , or  
already had a match  that  preferred over 

But students always trade up, so  must prefer final match  over , 
which they prefer over .  

M
∃(h, s) (h, s′￼), (h′￼, s) ∈ M

h s s′￼ s h h′￼

h s s′￼

s h h′￼′￼ s
h′￼′￼ s h

s h′￼ h′￼′￼

h ( ⇒⇐ ) ∎



Deferred Acceptance Properties
• The deferred-acceptance algorithm does not specify the order in which 

the hospitals should make offers
• Do all orders produce the same unique matching?
• Given an input instance, there may be several stable matchings.
• Question.  Does Gale-Shapely produce the “best matching” for 

hospitals or students?
• Turns out hospital-proposing algorithm produces a unique matching 

that is hospital optimal and student pessimal
• Matches hospital to “best achievable” student and student to 

“worst-achievable” hospital among all stable matchings



Best Achievable Partner
Let  be an instance of the stable marriage problem

• A student  is an achievable partner for hospital , if  is 
part of some stable matching of .

• We call the pair  an achievable pair

• For hospital , let best( ) denote the most preferred achievable 
partner of  (among all stable matchings)

• Lemma.   is the unique output of the 
hospital-proposing deferred-acceptance algorithm.

• True regardless of the order in which different hospitals make offers

I

s ∈ S h ∈ H (h, s)
I

(h, s)

h ∈ H h
h

M* = {(h, best(h)) |h ∈ H}



Best Achievable Partner
• Lemma.   is the unique output of the hospital-

proposing deferred-acceptance algorithm.

• Proof (By Contradiction).  Let  be the first hospital rejected by 

•  instead holds on to offer from some 

•  must be the best achievable partner for ', why?

• If not  has already been rejected by , violates condition that  is 
the first such hospital 

• Let  be a stable matching s.t. 

• Claim.   is a blocking pair for matching , why?

•  prefers  to , and  prefers  to whoever they are matched to in  

M* = {(h, best(h)) |h ∈ H}

h s* = best(h)

s* h′￼

s* h

h′￼ best(h′￼) h

M (h, s*) ∈ M

(h′￼, s*) M

s h′￼ h h′￼ s* M
( ⇒⇐ ) ∎



Takeaways
• The outcome of hospital-offering deferred acceptance is hospital-

optimal, among all stable matching

• There is no tradeoff to make in terms of who offers first!

• What about the accepting side?

• The outcome of the hospital-offering deferred acceptance is 
students-pessimal, among all stable matchings

• In particular, students get matched to their worst-achievable 
partner among all stable matchings

• Incentive considerations.  Which side of the market has an 
incentive to misreport their preferences? 

• Can misreports be beneficial?  Is the mechanism strategyproof?


