CS 357: Algorithmic Game Theory Lecture 7: Revenue Equivalence

Shikha Singh

Announcements

- Hand in HW 3
- Pick up **HW 4**, due next Tuesday in class
- Assignment 2 due Friday (March 7) at noon
 - Partner assignment: **submit joint PDF** on Gradescope
- Assignment I grading in progress, solutions are posted on GLOW
- Exam I will be held in class on March 14
 - Short-"ish" questions on topics covered until the week before
 - Composed of mostly HW style questions with 1/2 open-ended
- Results on the first-price class auction as well as discussion of analysis
 - Today!

Recap from Last Time

- Great discussion on GSP and its analysis
 - Paper reading and proof writing practice
 - Proof writing is all about convincing others (your group, your classmates, me)
- Proofs of all five parts will be posted on GLOW for review
- Wrap up sponsored search auctions today

Locally Envy Free

- Does such a bid b_i always exist?
 - As long as $b_{i+1} \le v_i$ and $\alpha_i < \alpha_{i-1}$, then yes $(b_{i+1} < b_i \le v_i)$

Balanced Bidding

- A bid profile $\mathbf{b} = (b_1, b_2, \dots, b_n)$ satisfies the balanced bidding if
 - For bidder i for $2 \le i \le k$

$$\underbrace{\alpha_i(v_i - b_{i+1})}_{\text{utility current position}} = \underbrace{\alpha_{i-1}(v_i - b_i)}_{\text{utility in case of retaliation}}$$

- Any unassigned bidder bids their true value
- For value ordered bids, the balanced bidding requirement defines a unique bid profile (up to the indifference of the top bidder)

Locally Envy Free Implies Envy Free

- I. [Equivalence of various auction formats]. As long as the allocation is rule, payments can be irrelevant: payment charged as a function of bids does not determine revenue: it is determined by bidder's strategies.
- [DSE vs Equilibrium outcome]. VCG ("Front-load the work" on the designer---payments enforce a truthful DSE rule or GSP (let the bidder's "fight" it out)
- 3. **[Role of Information].** Complete information is a strong assumption, incomplete information is harder to analyze
- [Theory vs Empirical behavior]. Analyzing bidder behavior requires understanding the equilibrium; equilibrium not always "reached", but best response dynamics tend to converge to it

Design Trade Offs

- VCG is used for contextual non real-time advertising, e.g. by X & Facebook
- Switch from GSP to VCG :
 - 2012, Google switched from GSP to VCG for its ad network AdSense
 - 2015: Yandex search engine
- Reasons to prefer VCG over GSP?
 - Truthful behavior: no need for bidders to strategize
 - Easier for sellers to estimate revenue
 - Enables faster experimentation: seeing how reserve prices effect revenue, etc.
 - Flexibility: VCG auction is highly configurable to different preferences and contexts

Back to First Price

- Ad exchanges moved from second-price sealed bid to first-price sealed-bid, with Google switching during 2019
- Transparency. Some businesses are both sellers and buyers
- Composability with different types of ads

	Non real-time	Real-time (programmatic)
Sponsored	• Google and Bing	n/a
search	GSP	
	• Yandex	
	VCG	
Contextual	Own inventory	3rd party inventory (ad exchanges)
	• Twitter and Facebook	• AppNexus, Twitter, MoPub, and
	VCG	Google DoubleClick
	3rd party inventory (ad networks)	First price (was second price)
	• Google AdSense, FB Audience Network	
	VCG	
	• Microsoft Audience Ads	
	GSP	

Why Do Competitive Markets Converge to First-Price Auctions?

Renato Paes Leme renatoppl@google.com Google Research New York, NY Balasubramanian Sivan balusivan@google.com Google Research New York, NY Yifeng Teng* yifengt@cs.wisc.edu University of Wisconsin-Madison Madison, WI

ABSTRACT

We consider a setting in which bidders participate in multiple auctions run by different sellers, and optimize their bids for the *aggregate* auction. We analyze this setting by formulating a game between sellers, where a seller's strategy is to pick an auction to run. Our analysis aims to shed light on the recent change in the Display Ads market landscape: here, ad exchanges (sellers) were mostly running second-price auctions earlier and over time they switched to variants of the first-price auction, culminating in Google's Ad Exchange moving to a first-price auction in 2019. Our model and results offer an explanation for why the first-price auction occurs as a natural equilibrium in such competitive markets.

"Moving to a first-price auction puts Google at parity with other exchanges and SSPs (supply-side platforms) in the market, and will contribute to a much fairer transactional process across demand sources.": Scott Mulqueen

First Price Auctions

Takeways

- Winners were mostly the same (bids were proportional to value)
- Bidders shade their bid down in first price
- Competition drives the bids up!
 - More number of bidders means more revenue
 - If sellers care about revenue, need to get more participation
- It is difficult for bidders to reason about equilibrium strategies

Questions

- What is the theoretical equilibrium that bidders are supposed to reach?
- Does our class auction match what theory says?
- Which auction (first price or second price) generates more revenue?

First vs Second Price Auctions

Both the first-price and second-price auction (at equilibrium) generate the same (expected) revenue!

To show this, need to analyze first-price auction, which is an incompleteinformation or "Bayesian game"

All Pay Auction

- Single item auction where highest bidder wins
- Each bidder (even those who lose) pay their bid
- Question. Does this auction make more revenue (at equilibrium) compared to first/second price auctions??

All auctions which have the **same allocation** (at equilibrium) make the exact **same revenue** (at equilibrium)

Same as VCG/GSP connection!! Both auctions, the winners are always the top k bidders

Incomplete Information Game

- Complete information game: utility structure (payoff matrix) is common knowledge
- Auctions are games of incomplete information: bidders values (and thus utilities) are private
- No dominant strategy equilibrium in first-price auction, thus we need a variant of Nash for incomplete information games
 - Called Bayesian Nash Equilibrium

Simplifying Assumptions

- Assume bidders have private values that are drawn independently and identically from the distribution ${\it G}$
 - We say values are drawn i.i.d from G
- Distribution G is common knowledge (called "common prior")
 - Every bidder knows the distributions and knows that others know it as well
- For first-price auction: we will further assume values are drawn i.i.d from the uniform distribution on [0,1]

BNE of First Price Auctions

Bayesian Nash Equilibrium

- A strategy or plan of action for each player (as a function of values) should be such that it maximizes each players expected utility
 - expectation is over the private values of other players
- Given a Bayesian game with independent private values v_{-i} , i's expected utility for a strategy profile $s = (s_1, ..., s_n)$ is

$$\mathbb{E}[u_i(s)] = \sum_{v_{-i}} u_i(s) \cdot \Pr(v_{-i})$$

• A strategy profile s is a **Bayes Nash equilibrium** if no player can increase their expected utility by unilaterally changing their strategy s_i

Strategy Assumptions

- Recall: strategy s_i is a function that maps their value to their bid b:
 - $s_i(v_i) = b_i$
- We assume that the strategy of all bidders in the auctions we study
 - Is a strictly increasing differentiable function: gives us that the bidder with higher value will also provide a higher bid (no ties)
 - $s_i(v_i) \leq v_i$ for all v_i and bidders i: that is, bidders can "shade" down their bids but will never bid above their true values
 - Also implies $s_i(0) = 0$
- These assumptions are just to simplify analysis

BNE of First Price Auctions

- Guess-and-check approach: guess an equilibrium strategy and verify
- Starting guess: Each bidder shade their bids down proportional to their value $s_i(v_i) = b_i = \alpha v_i$ for each bidder *i*
- To check if it is a symmetric BNE, fix s_{-i} and analyze what is the best response bid for bidder i: bid that maximizes expected $u_i(v_i, b_{-i})$

Will use **law of total expectation**: $E[X] = \sum_{i} E[X|A_i] \Pr[A_i]$

where events A_i are partitions of the sample space

- Suppose v_1, v_2 are i.i.d. from the uniform distribution on [0,1]
- Consider how bidder I should set their best response

• Guess a BNE strategy profile: say both bidders bid symmetrically some factor of their value $s(v_i) = \alpha \cdot v_i$

• Guess a BNE strategy profile: say both bidders bid symmetrically some factor of their value $s(v_i) = \alpha \cdot v_i$

Continuous Probability Review

• (Definition) A random variable X is continuous if there is a function f(x) such that for any $c \leq d$ we have

 $\Pr(c \le X \le d) = \int_{c}^{d} f(x) dx \quad \text{where } f(x) \text{ is the probability density}$ function (pdf)

 $P(c \leq X \leq d)$ = area under the graph between c and d.

Continuous Probability Review

• (Definition) The cumulative distribution function (cdf) F of a continuous random variable X denotes the probability that it is at most a certain value

$$F(k) = \Pr(X \le k) = \int_{-\infty}^{k} f(x) dx$$
 where $f(x)$ is the pdf X

• We often say X has distribution or is drawn from distribution F(x) rather than X has cumulative distribution function F(x)

Uniform Distribution on [a, b]

- Models settings where all outcomes in the range are equally likely
- PDF of a continuous uniform distribution on [a, b]:

$$f(x) = \left\{egin{array}{cccc} rac{1}{b-a} & ext{for } a \leq x \leq b, \ 0 & ext{for } x < a ext{ or } x > b \end{array}
ight. egin{array}{ccccc} rac{1}{b-a} & ext{f}(x) \ a & ext{f}(x) \ a & ext{f}(x) \ a & ext{f}(x) \end{array}
ight.$$

• CDF of a continuous uniform distribution on [a, b]:

$$\Pr(x \le k) = \frac{k-a}{b-a} \text{ if } a \le k \le b$$

Uniform Distribution on [0,1]

• CDF of a continuous uniform distribution on [0,1]:

 $\Pr(x \le k) = k \text{ if } a \le k \le b$

• Guess a BNE strategy profile: say both bidders bid symmetrically some factor of their value $s(v_i) = \alpha \cdot v_i$

• $\mathbb{E}[u_1] = (v_1 - b_1)(b_1/\alpha)$: how to set b_1 to maximize expected utility?

• $\mathbb{E}'[u_1] = (1/\alpha)(v_1 - 2b_1) = 0$, that is, $b_1 = v_1/2$

First Price: Two Bidders

- Theorem. Assume two bidders with their values drawn i.i.d. from Uniform [0,1], then the strategy $s(v_i) = v_i/2$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- Proof. Assume agent 2 bids using s(.), that is, $b_2 = v_2/2$
- We calculate agent 1's expected utility who has value v_1 and bid b_1

•
$$E[u_1] = (v_1 - b_1) \cdot \Pr[1 \text{ wins with bid } b_1]$$

 $= (v_1 - b_1) \cdot \Pr[b_2 \le b_1]$
 $= (v_1 - b_1) \cdot \Pr[v_2/2 \le b_1]$
 $= (v_1 - b_1) \cdot \Pr[v_2 \le 2b_1]$
 $= (v_1 - b_1) \cdot F(2b_1) = (v_1 - b_1) \cdot 2b_1$

First Price: Two Bidders

- Proof (Cont). Assume agent 2 bids using s(.), that is, $b_2 = v_2/2$
- Agent 1's expected utility who has value v_1 and bid b_1 when she wins

•
$$E[u_1] = (v_1 - b_1) \cdot 2b_1 = 2v_1b_1 - 2b_1^2$$

- Agent 1 with value v_1 should set b_1 to maximize $2v_1b_1-2b_1^2$ as a function of b_1
 - Differentiate and set derivate to zero (also check second order condition)

•
$$E'[u_1] = 2v_1 - 4b_1 = 0$$
, that is, $b_1 = v_1/2$

Symmetric analysis

for bidder 2

First Price: *n* Bidders

- **Goal:** Symmetric Bayes Nash equilibrium for *n* bidders in first price auctions where each bidders value is independently and identically distributed (i.i.d) from the uniform distribution on [0,1]
- Suppose every bidder $j \neq 1$ uses strategy $s_j = \alpha(n) \cdot v_j$
- Let's write the expression for expected utility of bidder 1 and figure out what value of b_1 maximizes it
 - Fix b_1, v_1 , write $\mathbb{E}(u_1)$ as a function of them
 - Each v_j for $j \neq 1$ is a random variable i.i.d. in uniform [0, 1]
- Deduce the value of $\alpha(n)$ from this

First Price: n Bidders

 $\mathbb{E}(u_1) = (v_1 - b_1) \cdot \Pr(1 \text{ wins with bid } b_1) + 0 \cdot \Pr(1 \text{ loses with bid } b_1)$ $= (v_1 - b_1) \cdot \Pr[b_1 \ge \max^n b_i]$ $= (v_1 - b_1) \cdot \Pr(b_1 \ge b_2 \cap b_2 \ge b_3 \dots \cap b_1 \ge b_n)$ Set $b_i = \alpha \cdot v_i$ for each i = 2, ..., n. As values are independent, we get: $\mathbb{E}(u_1) = (v_1 - b_1) \cdot \Pr(v_2 \le \frac{b_1}{\alpha}) \cdots \Pr(v_n \le \frac{b_1}{\alpha}) = (v_1 - b_1) \cdot \left(\frac{b_1}{\alpha}\right)^{n-1}$ To find the bid b_1 that maximizes this utility, can differentiate wrt b_1 and set to zero, which gives us $b_1 = \frac{n-1}{r} \cdot v_1$

First Price: *n* Bidders

- **Theorem.** Assume each of the *n* bidders have values drawn i.i.d. from uniform distribution on [0,1]. Then, the strategy $s(v_i) = \frac{n-1}{n} \cdot v_i$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- **Proof.** Verify by confirming that this in fact maximizes expected utility.
- **Takeaway**: the more the competition, the more the bidders need to bid closer to their value if they want to win.

