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Announcements and Logistics

* Assignment # 4 due this Friday at noon

« HW 7: Practice question on Bayes Nash (no need to turn it in, solutions will be posted)

. Midterm # 2 will be on April 29

e Similar to Exam 1: closed book but can bring up to 5 pages of notes
* Extra office hours this week: Thursday 1-3 pm, Friday 9.30-11.30 am

* Change of Room to give more space to spread out: Wach 015 (Downstairs)



Midterm 2 in this Room Downstairs

e Examtime: 1.10 - 2.25 pm, Wachenheim 015

* Please arrive 5 minutes early. Rohit will be proctoring the exam.



Topics: Midterm 2

* Mostly focused on everything covered after Midterm 1

* One-sided and two-sided matching/ stable matchings, voting, fair division and
decentralized matching markets with money

» Until today's lecture (Competitive equilibrium/Market-clearing prices), Until HW 7 and
Assignment 4

* No question about on paper eval # 3 but questions about top-trading cycle (topic of
paper eval # 2) are fair game

 From markets with money: Bayes Nash and revenue equivalence will be includead

 Need to remember and know how to use fundamental definitions (dominant-
strategyproof, Nash equilibrium, Condorcet consistency, etc.)




Review

» A preferred-item graph (given prices p) where nodes are items and buyers and there is

an edge between buyers and their preterred items (items that maximize utility)

« A selection of prices p = (py, Py, - - -, P,,,) is market-clearing if:
 Condition 1. There is a matching in the preferred-item graph such that all buyers are matched

. Condition 2. If an item j is not matched to any buyer, then its price p; = 0, in other words,

every item with non-zero price p; > 0 must get sold

. First Welfare Theorem (Max-weight matching). If (M, p) is a competitive equilibrium, then M is
a matching with maximum total value, that iIs,

n

n
. Z ViM(i) > Z ViM'() for every matching M’
=1 =1



First Welfare Theorem Proof

« Proof. Consider some matching M* with the maximum-possible total value
« What we know: (M, p) is a competitive equilibrium

« Using envy-free condition to compare M and M* at price Pp:
Vi) — Pmey = Vi) — Py for every bidder 1

M* can assign each bidder at
et the sum of prices ij =P Most one rtem

j=1

* Summing up the inequality in blue over all bidders

sz‘M@') - ZPM“) > Y v _ZPM*(i)a
1=1 1=1 1=1

total value of M = P by CE property (b) total value of M*



First Welfare Theorem Proof

« Proof. Consider some matching M* with the maximum-possible total value
« What we know: (M, p) is a competitive equilibrium

« Using envy-free condition to compare M and M* at price Pp:
Vi) — Pmey = Vi) — Py for every bidder 1

M* can assign each bidder at
et the sum of prices ij =P Most one rtem

j=1

« Reorganizing this inequality, we get that value of M > value of M* R

sz‘M@') - ZPM“) > Y v _ZPM*(i)a
1=1 1=1 1=1

total value of M = P by CE property (b) total value of M*



Competitive Eq: Existence

 Theorem. In every market where at most one good Is assigned to each buyer,
there Is at least one competitive equilibrium.

* Corollary. Market-clearing prices are guaranteed to exist.

* We prove this constructively through an mechanism that shows how such
prices might emerge organically in a market

* [ntuition iIdea behind our "ascending-price auction”

. If a set of k items is preferred by more than k buyers at its current price,

then the prices of these items should rise

« Keep identifying such “constricted sets" and increasing prices until the
market clears



Ascending-Price Mechanism

. Start with prices of all items p; = 0
« Assume all valuations are integers Vi € Z (simplifying assumption)

 Step 1. Check if the current prices are market clearing, if so we are done

e puild the preferred graph, check it there is a buyer-perfect matching

o Step 2. Else, there must a constricted set:

« There exists S C {1,...,n} suchthat [ S| > | N(S)|

e N(S) are items that are over-demanded
. |f there are multiple such sets, choose the minimal set N(S)

. Increase p; < p; + 1 for all items in the set ] € N(S)

GO back to Step 1.



Single ltem Case

« A single item (labelled 1) for which each buyer has a value v; > 0
e Addn — 1 dummy items (2,..., n) that everyone values at 0

* At the beginning preferred-item graph has edges from each buyer
to item 1

e Thus, {1} is our minimal constricted set

« We need to keep raises the price of item 1 until all except one

buyer has a preferred edge to at least one item in {2,3,...,n}
Ve have recreated the second-

* At what price does this happen? price auction outcome!

« Exactly when p; = second-highest valuation

« The person with the highest valuation is matched to item 1



Preferred-ltem Graph

Zoe Valuations
Prices

--I—- n

) 1
~—Sl
[,
P
(R, (I,




Preferred-ltem Graph

Zoe Valuations
Prices
| T
i 12, 2. 4
O 8, 7,6
7,5, 2




Preferred-ltem Graph

Zoe Valuations
Prices

--I—- n

| 1
~—Sl
[,
P
(R, (I,




Preferred-ltem Graph

Zoe Valuations
Prices

3,7, 6

7,5, 2




Preferred-ltem Graph

Zoe Valuations
Prices

2 -II_. -




Preferred-ltem Graph

Zoe Valuations
Prices
3 mn
i 12, 2. 4
1 8, 7,6
7,5, 2




Preferred-ltem Graph

Zoe Valuations
Prices Matching that gives everyone

their preferred item: these
prices are market clearing
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Ascending-Price Algorithm

. Start with prices of all items p; = 0, assume all valuations v; € L

o Step 1. Check if there is a buyer-perfect matching in preferred item graph

o Step 2. Else, there must a constricted set:
e Thereexists S C {1,...,n} suchthat [S| > [N(S)]
e N(S) are items that are over-demanded
o If there are multiple such sets, choose the minimal set N(S)

. Increase p; < p; + 1 for all items in the set ] € N(S)

* (Go back to Step 1.

* Invariant: if an item has non-zero cost, that item is tentatively matched to some
buyer: p; >0 = Ji: () eM




Analyzing Our Auction

 Maintain invariant: if an item has non-zero cost, that item Is tentatively
matched to some buyer: p; >0 = di:(j,) €M

o SUpPpPOSe until step ¢ you have invariant maintained and we identity minimal

constricted set N(S) whose prices increase by 1 in this step

At the new price, all edges between S to N(S) still exist (buyers in S may have
more edges to items outside that are now just as good)

. Tentatively match items in N(S) to buyers in S (if these items were matched to
other buyers, or buyers to other items, remove those edges from the matching)

* Why Is this matching possible?

» We use Hall's theorem on items in T = N(S)



Why Such a Matching EXxists

N(S)
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Why Such a Matching EXxists

N(S)

o
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Why Such a Matching EXxists

N(S)

N(S) was not a minimal
constricted set!

D]' O 6 6 o o



Proving Our Algorithm Terminates

So far: showed that if the algorithm ends, the prices are market clearing.
Theorem. The ascending price auction terminates.

Proof. Show that algorithm starts with a certain amount of "potential energy” which goes down
by at least 1 in each iteration

Let the potential of any round be defined as:
_— *K
E= | Z PjT Z “
tems buyers i

where p; is the price of item j in that round and ul.* s the maximum utility 1 can obtain given prices

p in that round



Proving Our Algorithm Terminates

» Theorem. The ascending price auction terminates. F = Z p;+ Z Mi*

- Proof. tems buyers i

. At the the beginning, all prices are zero and ul.* = max v
J

]

e Thus, before the auctions starts EO — Z max Vij

* To wrap up proof, we show l /

. Potential can never be negative E > ()
. Potential at each step goes down by at least 1

. Thus, in E steps the algorithm terminates. B



Proving Our Algorithm Terminates

. Lemma: Potential energy E is always non-negative. F = Z p;+ Z Mj>x<

* Proof. tems buyers i

. If there is at least one item with price O then each ul.* > 0

* Why Is this true”? Use our invariant!

« Every non-zero priced item is matched, thus whenn — 1
items are matched, no need to raise the price of nth item

 Since prices are always are always nonnegative £ > 0



Proving Our Algorithm Terminates

. Claim. Potential E goes down by at least one each step. F— Z D+ Z e
J J
. Proof. Ateach step, we raise the price of all items in N(.S), how items j obuyers i
much does it increase the first term in £ 7
. | N(S)]

« However, the value of ul.* goes down by one for each node in S,

how much does this decrease the second term in E7
» |S]
. Since |[N(S)| < |S], then potential decreases by at least 1
o Thus, the algorithm must terminate in £, steps R

* QOur ascending auction terminates at market clearing prices!



VCG Prices vs Market-Clearing

» \/CG prices set centrally: ask each buyer to report their valuation and charge each
buyer a "personalized price" for their allocation

* \VCG prices are only set after a matching has been determined (the matching that
maximizes total valuation of the buyers)

* Not just about the item itself, but who gets the item

* Market-clearing prices are "posted prices" at which buyers are free to pick
whatever item they like

* Prices are chosen first and posted on the item

* Prices cause certain buyers to select certain items leading to a matching



Applying VCG

Prices VCG. Need to find surplus
maximizing allocation first
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Applying VCG

Prices |
Surplus without Zoe: 7+7 = 14

Surplus by others when Zoe Is present:
6+5=1I

pp =3

o by

3,7, 6

7,5, 2




Applying VCG

Prices

Zoe Valuations

surplus without Chris: 12+5 = 17
Surplus by others when Chris is
present: 12+5 = 17

3 12, 2, 4

Jing

7,5, 2




Applying VCG

Prices

Zoe Valuations

Surplus without Jing: 12+7 = 19
Surplus by others when Jing Is present:
12+6 = 18

12, 2, 4

3,7, 6




Applying VCG

Prices

Zoe Valuations

We got the same prices & matching  —Hris
as our competitive equilibrium

3,7, 6

7,5, 2




VCG Prices are Market Clearing

* Despite their definition as personalized prices, VCG prices are always
market clearing (for the case when each buyer wants a single item)

e Suppose we computed VCG prices for a given matching market

 Then, instead of assigning the VCG allocation and charging the
price, we post the prices publicly

* Without requiring buyers to follow the VCG match

* Despite this freedom, each buyer will in fact achieve the highest utility

This is a generalization of the VCG/GSP
result (where valuations are

 Theorem. In any matching market (where each buyer can receive a constrained). The general proof is
beyond the scope of this course.

by selecting the item that was allocated by the VCG mechanism!

single item) the VCG prices form the unique set of market clearing
prices of minimum total sum.



General Demand

 Market clearing prices may not exist in combinatorial markets
« Example, suppose our market has two items {L, R}
* Two buyers Alice and Maya
o Alice wants bothv ({L,R}) =5,v,({L}) =v.({R}) =0
. Maya wants either, vp({L}) = vp({R}) = vp({L,R}) =3
 What's the welfare-maximizing allocation?
* (Give both to Alice
 \What must the price of each be so that Maya doesn’t want it?

- p(L}) 2 3.p(1R}) 2 3

« At a price of > 6 does Alice want it?

\—/g/

AR




Summary

 Ascending price auction is also called Hungarian algorithm in matching literature
 Hungarian algorithm is used to find max-weight bipartite matching

* Prices are just a conceptual interpretation of "dual” variables
e Caveats:

 No sales occur until prices have settled at their equilibrium point

» Coordination required for tie breaks

 Running time to convergence can be very slow



Competitive Equilibrium Research

e [Left] 2016 Article argues that competitive equilibrium’s tie breaking requirement can be fairly strong

* Use learning theory to predict buyer's behavior and demand and show convergence under
such some mild assumptions

e [Right 2021]. Algorithms with predictions paper predicts "prices"” tor faster runtime

Faster Matchings via Learned Duals
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The Myth of the Invisible Auctioneer

* One fundamental assumption when we executed the ascending price
mechanism to compute market-clearing prices is:

 The market does not actually clear until prices have settled at their
equilibrium point

e As if an invisible auctioneer is coordinating the prices and lets the market know

when the prices have converged and trade can actually take place

e |n practice, one might imagine that sales are actually happening concurrently
with price adjustment



Fluctuations In Practice: Research

e |n practice, one might iImagine that sales are actually happening
concurrently with price adjustment

e [tturns out, the way buyers and sellers respond to prices in the
short-run can dramatically influence prices

 Example. Surge pricing on ride-sharing platforms can be
viewed as an attempt to find market-clearing prices

 However, it passengers and drivers respond to prices
myopically, the resulting behavior can be erratic

 Recent research in AGT studies dynamic (online) resource
allocation problems that take these factors into account




Decentralized Markets
without Money




