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Last Time

Proved Gibbard-Satterthwaite theorem.

When there are 3 or more alternatives, a voting rule Is
strategyproof and onto if and only if it is dictatorial

Ways to circumvent GS theorem

Mechanism design with money (first halt of course)

Restricted preferences: single-peaked or others

Approximation

i

Restricting to rules that output a set of alternatives (rather

than a single winner)
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Arrow's Impossibility Theorems




Arrow’s Impossibility Theorem

» Statement. With three or more alternatives, no social-ranking
function satisfies the following three properties:

* Non-dictatorship
* Unanimity
e |ndependence of irrelevant alternatives (l1A)

. |IA means that, for every pair a, b of alternatives, the relative order
of a over b in the output ranking should be a function of only the
relative order of a, b in each voter's list and not depend on the
position of any ‘irrelevant” alternative ¢ in anyone's preferences

Plurality does not satisfy [IA
(e.g., Bush vs Gore outcome
was affected by Nader)



Arrow’s and GS

 One can also derive the GS theorem from Arrow’s, using a reduction
e Suppose we have a non-trivial and strategyproof voting rule

* Use it to construct a voting rule that satisfies the three conditions in
Arrow’'s theorem

* [ntuitively, not satistying I|A can lead to opportunities for strategic
manipulation

 Need to deal with technicalities like Arrow's Is a result about social-ranking
functions (voting rules that produce a full ranked list) while the GS holds
even for social choice functions (voting rules that elect a winner)




Single-Peaked Preferences

 Most common restriction on preferences considered in the voting
landscape:

» Single-peaked preferences
* Imagine that the candidates are points on a real line

* Line could represent the political spectrum

. A voter I has single-peaked preferences if there is a “peak” p; € R such
that the voters prefers candidates closer to her peak



Single-Peaked Preferences

* Question. Given single-peaked preferences, how do we

mccl av)
select a candidate?
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* Turns out: Median rule is also Pareto optimal and satisfies o— % \0
the Condorcet criterion
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Hardness of Manipulation

* Figuring out whether there is a profitable manipulation is intractable for
ranked-choice voting (even in the presence of complete information)

 However, this result holds when the number of alternatives grow (in
contrast to voters)

e Unfortunately, NP-hardness just says it is hard for some worst-case instances

 What if it is actually easy for most practical instances”



Circumventing GS: Complexity

So far we did not put any restrictions on the strategies voters can use
Suppose we restrict to strategies that are "efficient’ to compute
f-manipulation problem:

o Input: A set of preference lists P,, ..., P, of voters 1,...,n

« Goal: Compute a preference list P; (a possible misreport) such that 1's
favorite candidate a wins: f(Py,...,P,) = a

Questions:
* |s it always possible to find such a list?

« How computationally difficult is it to solve f-manipulation problem?



Greedy Manipulation: Borda

« Suppose you are trying to solve the f~-manipulation problem in Borda

Can I make @ win?

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.pdf
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Greedy Strategy

« Assignment 4: Show that greedy is optimal: always solves f-manipulation
whenever It Is possible

 Question. Does the greedy strategy work for other voting rules??



Ranked-Choice Voting

| Tie-breaking rule
Can I make @ win? >0>0>




Ranked-Choice Voting

Tie-breaking rule
>O>00>




Ranked-Choice Voting

Tie-breaking rule
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Ranked-Choice Voting

Tie-breaking rule
>O>00>

Ranked-choice winner :



Ranked-Choice Voting

| Tie-breaking rule
Can I make @ win? >0>0>

Vi 2 3 2 2

What if 1 we put ‘ at the top?

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.pdf



Ranked-Choice Voting

| Tie-breaking rule
Can I make @ win? >0>0>
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Ranked-Choice Voting

| Tie-breaking rule
Can I make @ win? >0>0>

V4
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() eliminated in the next round .

Does there exist a way to get ‘ to win”

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.pdf
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Ranked-Choice Voting

| Tie-breaking rule
Can I make @ win? >0>0>

Ranked-choice winner : @

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.pdf



When Does Greedy Manipulation Work"

o [Bartholdi, Tovey, Trick '89] Characterized voting rules where f-manipulation is
solvable in polynomial time.

The Computational Difficulty of Manipulating an Election®

J. J. Bartholdi ITI, C. A. Tovey, and M. A. Trick**

School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

Received June 9, 1987 / Accepted July 29, 1988

Abstract. We show how computational complexity might protect the integrity of
social choice. We exhibit a voting rule that efficiently computes winners but 1s
computationally resistant to strategic manipulation. It is NP-complete for a
manipulative voter to determine how to exploit knowledge of the preferences of
others. In contrast, many standard voting schemes can be manipulated with
only polynomial computational effort.



When Does Greedy Manipulation Work"?

o [Bartholdi et al' 89] Greedy strategy can correctly solve
f-manipulation for any voting rule f that can be stated as scoring rule s(P) - R

. Max-score winner: the candidate with the largest s(P, i) wins

« Monotonicity of score: Suppose a candidate b is preferred over the set § under
profile P and " under P’ and suppose S’ C §’, then score s(P, x) < s(P/, x)

« Moreover if f can be computed in polynomial time then the manipulation problem is
polynomial-solvable

e Turns, out these conditions hold for Plurality and Borda (also Copeland)
 (Copeland rule winner: who beats most others under head-to-head comparison

e Does not hold for Ranked-choice



Ranked-Choice Voting

 f-manipulation is NP hard in ranked-choice
voting, even if you know everyone's
preferences

 Reasonable to assume profitable manipulations
are not likely in such a voting rule

e However, NP hardness is a worst-case notion of
difficulty

e Most Instances are not worst case!

Single transferable vote resists strategic voting

John J. Bartholdi ITI' and James B. Orlin?

! School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

?Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Received December 24, 1990 / Accepted May 12, 1991

Abstract. We give evidence that Single Tranferable Vote (STV) is computationally
resistant to manipulation: It is NP-complete to determine whether there exists a
(possibly 1nsincere) preference that will elect a favored candiate, even in an
election for a single seat. Thus strategic voting under STV is qualitatively more
difficult than under other commonly-used voting schemes. Furthermore, this
resistance to manipulation is inherent to STV and does not depend on hopeful
extraneous assumptions like the presumed difficulty of learning the preferences
of the other voters. We also prove that it is NP-complete to recognize when an
STV election violates monotonicity. This suggests that non-monotonicity in STV
elections might be perceived as less threatening since it is in effect “hidden” and
hard to exploit for strategic advantage.



Hardness of Manipulation

* |nteresting open problem to design voting rules that are hard to
manipulate on average

* Very nice and readable article about manipulation in voting

Al’'s War on Manipulation:
Are We Winning?

Piotr Faliszewski and Ariel D. Procaccia

"The most controversial

It
a

N

bart of the approach Is that

relies on NP-hardness as
measure of computational

difficulty. T he i1ssue Is that

°-hardness Is a Worst-

case notion and the fact
that a problem Is NP-hard
simply means that it has
some difficult instances and
not that necessarily the
ones typically occurring in
practice are hard to solve.”




Approximate Approaches

* [nthe vein of approximate solutions in algorithms, one can try to relax
the strategyproofness conditions

 Consider 'milder" notions of incentive compatibility

Approximate Strategyproofness

Benjamin Lubin David C. Parkes
School of Management School of Engineering and Applied Sciences
Boston University Harvard University
blubin@bu.edu parkes@eecs.harvard.edu

July 24, 2012

Abstract

The standard approach of mechanism design theory insists on equilibrium behavior by par-
ticipants. This assumption is captured by imposing incentive constraints on the design space.
But in bridging from theory to practice, it often becomes necessary to relax incentive constraints
in order to allow tradeoffs with other desirable properties. This paper surveys a number of dif-
ferent options that can be adopted in relaxing incentive constraints, providing a current view of
the state-of-the-art.




Voting in CS Applications



Voting in CS

In a democracy, voting serves as a way to reach consensus between differing
opinions

In CS, we often use voting as a way to aggregate rankings

To recover the "ground truth" from noisy, imperfect estimates

Voters are effectively cooperating to figure out the objective correct answer: e.g.,
the true ranking of a set of Web pages by relevance

Rank-aggregation problem:

Given different rank orderings, output a final ranking of alternatives that best
captures the input orderings

Objective: minimizes some notion of "distance’



Kemeny Rule

Kendall tau distance: the Kendall tau distance between two ranked lists Is the total number
of rank disagreements over all unordered pairs

Also called "bubble sort distance”: Kendall tau distance between two ordered lists: number
of “swaps” needed to go from one to the other

For example, consider two ranked lists
. L=(b,e,d,a,c)and L' = (b,a,e,d,c)
What is the Kendall tau distance between L and L' ?
» Two because they disagree on pairs (a, €) and (a, d)

Kemeny rule. Given preference lists L = (L, ..., L, ), the Kemeny rule selects a ranked
list L* of alternatives that minimizes the Kendall tau distance between L* and L; summed
over all agents 1.



Computational Considerations

* Theorem. The problem of determining the social rank order in the
Kemeny rule is NP hard.

* Thisisn't really a problem for cases where the number of candidates
won't grow too large

* But, Kemeny rule is often used for rank aggregation in CS applications
and there scalabillity is a real concern

* |n practice, good heuristics exist to solve this problem

* [nteger linear programming and branch and bound methods



2001

Rank Aggregation Revisited

Cynthia Dwork* Ravi Kumar' Moni Naor* D. Sivakumar®

Abstract

The rank aggregation problem is to combine many different rank orderings on the same set of can-
didates, or alternatives, in order to obtain a “better” ordering. Rank aggregation has been studied ex-
tensively in the context of social choice theory, where several “voting paradoxes” have been discovered.
The problem also arises in many other settings:

Sports and Competition: How to determine the winner of a season, how to rank players or how to
compare players from different eras?

Machine Learning: Collaborative filtering and meta-search,;
Statistics: Notions of Correlation;
Database Middleware: Combining results from multiple databases.

A natural step toward aggregation was taken by Kemeny. Informally, given orderings 71, . . ., 7 on (par-
tial lists of) alternatives {1, 2, ..., n}, a Kemeny optimal ordering ¢ minimizes the sum of the “bubble
sort” distances

¥ _K(o,7).

Thus, intuitively, Kemeny optimal solutions produce “best” compromise orderings. However, finding a
Kemeny optimal aggregation is NP-hard [4].

In this work we revisit rank aggregation with an eye toward reducing search engine spam in meta-
search. We note the virtues of Kemeny optimal aggregation in this context, strengthen the NP-hardness
results, and, most importantly, develop a natural relaxation called local Kemeny optimality that preserves
the spam-fighting capabilities of Kemeny optimality at vastly reduced cost. We show how to efficiently
take any initial aggregated ordering and produce a maximally consistent locally Kemeny optimal solu-
tion.

We therefore propose a new approach to rank aggregation: begin with any desirable initial aggrega-
tion and then “locally Kemenize” it. We also propose the use of Markov chains for obtaining the initial
aggregation, and suggest four specific chains for this purpose.

How to aggregate Top-lists:
Approximation algorithms via scores and average ranks

Simon Mauras *
simon.mauras@Qirif.fr

Claire Mathieu *
clairemmathieu@gmail.com

Abstract

A top-list is a possibly incomplete ranking of elements: only
a subset of the elements are ranked, with all unranked
elements tied for last. Top-list aggregation, a generalization
of the well-known rank aggregation problem, takes as input
a collection of top-lists and aggregates them into a single
complete ranking, aiming to minimize the number of upsets
(pairs ranked in opposite order in the input and in the
output). In this paper, we give simple approximation
algorithms for top-list aggregation.

AN ALGORITHMIC VIEW OF VOTING* 2016

RONALD FAGINT, RAVI KUMAR*, MOHAMMAD MAHDIAN?#, D. SIVAKUMAR*, AND
ERIK VEE*#

Abstract. We offer a novel classification of voting methods popular in social choice theory. Our
classification is based on the more general problem of rank aggregation in which, beyond electing
a winner, we also seek to compute an aggregate ranking of all the candidates; moreover, our clas-
sification is offered from a computational perspective—based on whether or not the voting method
generalizes to an aggregation algorithm guaranteed to produce solutions that are near optimal in
minimizing the distance of the aggregate ranking to the voters’ rankings with respect to one of
three well-known distance measures: the Kendall tau, the Spearman footrule, and the Spearman rho
measures. We show that methods based on the average rank of the candidates (Borda counting),
on the median rank of the candidates, and on the number of pairwise-majority wins (Copeland) all
satisfy the near-optimality criterion with respect to each of these distance measures. On the other
hand, we show that natural extensions of each of plurality voting, single transferable voting, and
Simpson—Kramer minmax voting do not satisfy the near-optimality criterion with respect to these
distance measures.




Fair Division of Divisible Goods



Fair Division
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Cake Cutting Problems

e Fairly dividing a heterogeneous, divisible resource among
agents with differing preferences

 heterogenous: eqgual amounts of the resource can have
different values for different agents

e divisible: any fractional allocation is feasible
 Resource is often a cake (hence the name)

* |n practice, can be processing time on a compute cluster (with
some times of the day more valuable than others)




Fair Division Model 0

« Line Cake. Letthe cake be the unitinterval [0O,1]

. Each player I has a valuation function v;: the value v,(S) for
any supbset

« Assume v; is normalized with v,([0,1]) = 1
. v, is additive on disjoint subsets: v(A) + v.(B) = v{(A U B)

e (Goal Is a fair division, we need a notion of fairness

ol




Fair Division Model 0

e (Goal Is a fair division, we need a notion of fairness

 Proportional. An allocation A, ..., A, of cake to n players is

proportional if v.(A;) > 1/n for every player

 Envy free. An allocation Ay, ..., A, of cake to n players is

envy free if V.(A;) > vi(Aj) for every pair 1, J of players

o Envy free = Proportionality (stronger notion) p “.’




Two Agents

* Suppose we only have two agents, can you suggest a natural protocol
that is proportional and envy free

 Both properties are equivalent for n = 2 case




Two Agents: Cut and Choose

o Player 1 spli
(according

ts the good into two equally-valuable pieces A and B

1O Vl)

. Player 2 picks whichever A, B she likes better (according to v,)

1/2 1/2

Vo(x, 1) = vy(1,x)



Cut and Choose Protocol

 Is proportional: player 1 gets exactly half, player 2 gets at least 1/2

—nvy free: player 2 gets favorite piece, player 1 values each the same

1/2 1/2

Vo(x, 1) = vy(1,x)



Proportionality: n players

* A referee gradually moves the knife from left to right

 As soon as the knife reaches a point s.t. the piece to the left is equal to
1/n of some players value

 @Give the piece to that player

 Delete that player and its share and recurse
 (Ties are broken in a coordinated way)

 Why is this proportional”

Q| =t

« Every player except last gets 1/n

« Last player gets at least 1/n



Three Players: Envy Free

 Even with three players, guaranteeing envy-free ness gets tricky

3 player case: Selfrige and Conway's protocol

 Nice exposition In:

https://www.quantamagazine.org/new-algorithm-solves-cake-cutting-problem-20161006/

How to Cut Cake Fairly and Finally Eat It
Too

(A1 IFnv crinntictc Ih A1 o~ Y 1 121141 l AAvithiy Fhat ~Aam FATviaiy A1vir Ao
computer scientists nave come up witn an atgoritnm tndat can jairty aividas
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d cake among any numper 0| peEo uf.»”ﬂ e.



https://www.quantamagazine.org/new-algorithm-solves-cake-cutting-problem-20161006/

Selfridge & Conway: 3 Players

* Phase 1.
« A divides the cake into 3 equal pieces (according to v,)
« B trims its favorite piece to create a tie with its second-favorite
o« M: main cake, §: trim
« Now agents choose their favorite piece from M in the order:
. C, then B, then A

« Condition: B must choose trimmed piece if C does not

« Let T be owner of trimmed piece (has to be C or B)

o Let T" be other among them, that is, 7" = (B U C)\T



Selfridge & Conway: 3 Players

 Phase 2.

o T"divides trim § into 3 equal pieces (according to v;)
« The agents pick their favorite remaining piece from § in order:
e 1T thenA,thenT” Trim~
* |5 every part of the cake allocated?
o |s this division, envy free for C?
e InM, C gets first pick
e InS,if C =1 each piece is equal

e InS,if C =T, then picks first



Selfridge & Conway: 3 Players

« Is this division envy free for B?

« In main cake, B has two pieces of equal value, so does
not envy C who goes first

« Does not envy A because chooses before A
e Intrim S, cases:

o IfB =T cutsS into equal pieces

« If B =T, then chooses first from $

« Finally, lets think about A who goes first in Phase 1

« Envy free piece in M (never gets trimmed piece)

« Why envy free piece in S (goes before T”



Selfridge & Conway: 3 Players

o Finally, lets think about A who goes first in Phase 1

e Envy free wrt M

 \Was the cutter and never gets trimmed piece

e Envy free wrt S

« Does not go envy 1" because chooses before 1"

« Does notenvy 1, why?

. Irrevocable advantage from Phase 1




Story: Envy Free Cake Cutting

» Question. Given n > 3 agents, does there exist an envy-free cake cutting algorithm?

 [Brams and Taylor '95]. gave am envy-free protocol for any number of players but the
number of steps were unbounded; depending on the choice of valuations, the protocol
not guaranteed to terminate

« Next open problem: is there an envy-free protocol that terminates in f(n) steps, where
n is the number of players

 Big open guestion for a couple of decades; many experts believed that no such
protocol existed

 [In 2016, breakthrough result by Aziz & Mackenzie
« Gave a 4-player protocol that terminated in at most 203 cuts

o Extended the result to n players, can you guess the number of cuts needed?



Envy Free Cake Cutting: n Players

o For the n-player case, the best known upper bound on the number of cuts is

. Itis atower of 6 n's!
* As for lower bound on the number of cuts

. The best known is Q(n?) [Procaccia 2009]
 Open problem. Can we do better in any direction?

e |[s it possible to find a polynomial time algorithm for envy-free cake cutting”



Fair Division of Indivisible Goods
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Quick Overview

. nagents, m indivisible items, each agent 1 has a value v;; for the jth

item

Assume additive valuation (that is, v(S) = Z V;

jES
* Proportionality and envy-freeness are defined similarly

* Neither are guaranteed to exist and finding such allocations are NP
hard (without money)

* Most literature in TCS in the past decade has tried to understand
approximate envy-free allocations



One Dollar Each Eliminates Envy

JOHANNES BRUSTLE, JACK DIPPEL, VISHNU V. NARAYAN, MASHBAT SUZUKI, and ADRIAN
VETTA", McGill University, Canada

We study the fair division of a collection of m indivisible goods amongst a set of n agents. Whilst envy-free
allocations typically do not exist in the indivisible-goods setting, envy-freeness can be achieved if some
amount of a divisible good (money) is introduced. Specifically, Halpern and Shah [12] showed that, given
additive valuation functions where the marginal value of each good is at most one dollar for each agent, there
always exists an envy-free allocation requiring a subsidy of at most (n — 1) - m dollars. The authors also
conjectured that a subsidy of n — 1 dollars is sufficient for additive valuations. We prove this conjecture. In fact,
a subsidy of at most one dollar per agent is sufficient to guarantee the existence of an envy-free allocation.
Further, we prove that for general monotonic valuation functions an envy-free allocation always exists with a
subsidy of at most 2(n — 1) dollars per agent. In particular, the total subsidy required for monotonic valuations
is independent of the number of goods.

CCS Concepts: « Theory of computation — Algorithmic game theory.



