CSCI 357: Algorithmic Game Theory Lecture 13: Voting & Social Choice 11

Shikha Singh

Announcements and Logistics

- Pick up **HW 6**, due Tues April 16
- **Paper Eval #3** (partner assignment):
 - Meet with me to discuss topic of interest
 - Look over posted papers before the meeting
 - Read selected paper and write a paper report
 - Just this opportunity to build background for project

APRIL 2025

SUN MON		TUE	WED	THU	FRI	SA	
			1			4	5
We're here			8	Assign #3	due	11	12
			15	Paper in c	#3 Eval lass	18	19
			22	Assign #4	nment due	25	26
	Midter	m 2 —	29	Paper a & Pr	#4 Eval oject —	2 No Class	3
				Check	kpoint		

ChatGPT Use Guidelines

- This is for Paper Eval #3/4 and Project:
 - You are allowed to use ChatGPT or similar tools to do "research" for finding papers and project topics
 - In particular, you can find it to find resources for topics, find related papers, etc
 - You can use it as a search tool to guide your creative thinking forward
 - You are **not allowed to use it to generate text** for your project report
 - The report should be in your words that describes your own findings
 - Use it like a helpful librarian/more powerful search tool
- ChatGPT use is not allowed for HWs and Assignments (which are meant for practice)

Recap: Plurality & Ranked-Choice

Discussed plurality and ranked choice voting

November 2024

Arizona, Colorado, Idaho, Montana, Nevada, Oregon and South Dakota had ballot measures that would have replaced party primaries with nonpartisan contests and/or created a ranked choice voting system in their elections.

ELECTIONS

Ballot measures to upend state election systems failed across the country

NOVEMBER 8, 2024 · 4:30 PM ET

The New York Times

Some on the Right Flirt With a Voting Method the Left Loves

Feb 2024

Ranked-choice voting could be on the November ballot in four states, a sign of the system's rising popularity. Most conservatives have opposed it. But some say that could be changing.

Ranked-Choice Voting

- Not Condorcet consistent
- Consider an example with alternatives $A = \{a, b, c\}$ and 5 voters with votes • Condorcet winner: b but get eliminated in the first round in ranked-choice

2 voters	l voters	2 voters
a	Ъ	С
b	С	Ъ
С	a	a

- Well known voting rule: often used in sports, also used in Eurovision song contest
- Voters submit their full ranked lists: an alternate gets |A| for each first-choice vote, lacksquare|A| - 1 points for each second-choice vote, and so on and 1 point for each lastchoice vote
- Example: \bullet
 - *a* gets 15 points, *b* gets 12 points
 - c gets 10 points, d gets 13 points
- Borda count would elect a
 - In contrast to ranked-choice b

	Voters $#1,2$	Voters $#3,4$	Voter #
1st Choice	a	b	С
2nd choice	d	a	d
3rd choice	c	d	b
4th choice	b	c	a

• **Question.** Is Borda count strategyproof?

1	2	3
b	b	а
а	а	b
С	С	С
d	d	d

Winner b

- Is Borda count strategyproof?
 - Idea: incentive to rank closest competitor to preferred candidate last
- In example, what is the Borda score of a and b?
 - *a*'s score: $2 \cdot 3 + 4 = 10$
 - *b*'s score: 2 * 4 + 3 = 11
- If voter 3 moves b to the last place
 - b's score: 8 + 1 = 9

1	2	3	
b	b	а	
а	а	b	
с	с	С	
d	d	d	

1	2	3		1	2
b	b	а		b	b
а	а	b		а	а
с	с	с		с	с
d	d	d		d	d

- **Question.** Does Borda count satisfy Condorcet criterion?
 - Question in next homework

Positional Scoring Rules

- In general, you can have different ways to score each position
- For each vote, a **positional-scoring rule** on m = |A| alternatives assigns a score of α_i to the alternative ranked in *j*th place. The alternative with maximum total score (across all votes) is selected.
 - Assume $\alpha_1 \geq \alpha_2 \geq \dots \alpha_m$ and $\alpha_1 > \alpha_m$
 - E.g., plurality gives 1 point for first-choice, zero for others
- Many positional scoring rules have been studied
 - You might see some on the homework/ papers you read

Comparison of preferential electoral systems [hide]

System \$	Mono- tonic ◆	Condorcet winner	Majo- rity ≑	Condorcet loser	Majority loser ≑	Mutual majority [♦]	Smith \$	ISDA ¢	LIIA ¢	Independence of clones	Reversal symmetry	Participation, consistency ◆	Later- no-harm \$	Later- no-help	Polynomial time
Schulze	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No	No	Yes
Ranked pairs	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes
Tideman's Alternative	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	No	Yes
Kemeny–Young	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	No
Copeland	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	No	No	Yes
Nanson	No	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	No	No	Yes
Black	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	No	No	No	Yes
Instant-runoff voting	No	No	Yes	Yes	Yes	Yes	No	No	No	Yes	No	No	Yes	Yes	Yes
Smith/IRV	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	No	Yes
Borda	Yes	No	No	Yes	Yes	No	No	No	No	No	Yes	Yes	No	Yes	Yes
Baldwin	No	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No	Yes
Bucklin	Yes	No	Yes	No	Yes	Yes	No	No	No	No	No	No	No	Yes	Yes
Plurality	Yes	No	Yes	No	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes
Contingent voting	No	No	Yes	Yes	Yes	No	No	No	No	No	No	No	Yes	Yes	Yes
Coombs ^[4]	No	No	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No	No	Yes
MiniMax	Yes	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	Yes
Anti-plurality ^[4]	Yes	No	No	No	Yes	No	No	No	No	No	No	Yes	No	No	Yes
Sri Lankan contingent voting	No	No	Yes	No	No	No	No	No	No	No	No	No	Yes	Yes	Yes
Supplementary voting	No	No	Yes	No	No	No	No	No	No	No	No	No	Yes	Yes	Yes
Dodgson ^[4]	No	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	No

Many Rules, Many Applications

Who Vetoed the Most in the UN?

Number of UN Security Council resolutions vetoed by permanent members 1946–2017

https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.pdf

One to Rule them All?

- For the same input profile, plurality, Borda and ranked-choice can all output a different winner!
 - Can you construct such an example? lacksquare
- Changing the voting rule changes the outcome of the mechanism
- Leads to contention on which voting rule is the "best"
- Voting theorists have an "axiomatic" approach to study voting rules
- Identify "desirable" properties that one would like
- Compare rules based on that
- **Question**: Is there any voting rule that is strategyproof and reasonable?

Properties of Voting Rules

Onto: For any candidate a, there exists an input profile where a wins

- Are Borda, plurality, ranked-choice etc onto?
 - Yes, can always construct a profile to make any candidate win

Properties of Voting Rules

Strategyproof: No voter can improve by misreporting preferences

- Are Borda, plurality, ranked-choice etc strategyproof?
 - No

Onto and Strategyproof

- (3 or more alternatives) onto but not strategyproof? Borda, Plurality, Ranked-choice
- (3 or more alternatives) strategyproof **AND** onto?

A Bad Voting Rule

Dictatorship : A voting rule is **dictatorial** if there is a voter *i* such that the rule lacksquarealways elects i's first choice (regardless of others' preferences)

- Is a dictatorship straregyproof?
- Is a dictatorship onto?

[Gibbard '73, Satterthwaite '75]

When there are 3 or more alternatives, a voting rule is strategyproof and onto if and only if it is dictatorial.

[GS Theorem] With three or more candidates, a voting rule is **strategyproof** and **onto** if and only if it is a **dictatorship**.

Goal. Strategyproof + Onto \implies Dictatorship

[Proof Outline]

Part I. Strategyproof <

Part 2. Monotone + Onto \implies Unanimous

Part 3. Monotone + Unanimous \implies Dictatorship

Exposition

https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.pdf \bullet

Monotonicity

- **Definition**. Suppose a is the current winner (on profile L). For all input profiles L', in L', then a should continue to win in L'.
 - Support of a either increases or stays the same: a's outcome cannot get worse
- **Theorem**. Strategyproof \iff monotone

which for all voters, any candidate who was ranked below a in L is still ranked below a in

[GS Theorem] With three or more candidates, a voting rule is **strategyproof** and **onto** if and only if it is a **dictatorship**.

Goal. Strategyproof + Onto \implies Dictatorship

[Proof Outline]

Part I. Strategyproof <

Part 2. Monotone + C

Part 3. Monotone + Unanimous \implies Dictatorship

$$\implies$$
 Monotonicity

Strategyproof \implies Monotone

- Suppose a rule is strategyproof but not monotone
- Strategyproof means:
 - lacksquare
- Not monotone means:
 - it is still possible for another candidate b to win in L'.

No voter can change their individual ranking to make a more preferred candidate win

• Suppose a is the current winner (on profile L). For all input profiles L', in which for all voters, any candidate who was ranked below a in L is still ranked below a in L', then

Strategyproof \implies Monotone

Suppose a rule is strategyproof but not monotone

Strategyproof \implies Monotone

Suppose a rule is strategyproof but not monotone

...

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p

Monotone \implies Strategyproof

- Suppose there is a voter v_k that prefers b to a
- Consider truthful instance on left where *a* wins

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p

Monotone \implies Strategyproof

- Suppose there is a voter v_k that prefers b to a
- Consider truthful instance on left where *a* wins
- Suppose v_k can misreport and make candidate b win (keeping other preferences fixed)

Monotone \implies Strategyproof

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p

[GS Theorem] With three or more candidates, a voting rule is **strategyproof** and **onto** if and only if it is a **dictatorship**.

Goal. Strategyproof + Onto \implies Dictatorship

[Proof Outline]

Part I. Strategyproof <

Part 2. Monotone + C

Part 3. Monotone + Unanimous \implies Dictatorship

$$\implies$$
 Monotonicity

- **Definition (Unanimity)**. Given preference voter prefers to b, then $f(L) \neq b$.
- **Lemma**. SP + Onto \implies Unanimous

Definition (Unanimity). Given preference profile L, if there is an alternative a that every

- voter prefers to b, then $f(L) \neq b$.
- **Lemma**. SP + Onto \implies Unanimous
- **Proof**. Suppose f(L) = b. Consider L' below. f(L') = ?

Definition (Unanimity). Given preference profile L, if there is an alternative a that every

- voter prefers to b, then $f(L) \neq b$.
- **Lemma**. SP + Onto \implies Unanimous
- **Proof**. Suppose f(L) = b. Consider L' below. f(L') = ?

Definition (Unanimity). Given preference profile L, if there is an alternative a that every

- prefers to b, then $f(L) \neq b$.
- **Lemma**. SP + Onto \implies Unanimous

Definition (Unanimity). Given preference profile L, if there is an alternative a that every voter

• **Proof**. We know f(L') = b by monotonicity. By onto, there exists a profile L'' where a wins.

[GS Theorem] With three or more candidates, a voting rule is **strategyproof** and onto if and only if it is a dictatorship.

Goal. Strategyproof + Onto \implies Dictatorship

[Proof Outline]

Part I. Strategyproof

Part 2. Monotone + C

Part 3. Monotone + Unanimous \implies Dictatorship

$MON + Unanimous \implies Dictatorship$

Gradually promote b in each voters preference list •

$MON + Unanimous \implies Dictatorship$

- Let v_p be such a **pivotal voter**

• At some point as we promote b, there must be a step where the winner switches from a to b

$MON + Unanimous \implies Dictatorship$

- Lemma. Show that v_p can make a win even if everyone else ranks a last
- That is, v_p is the dictator for candidate a
- Since *a* was arbitrary, every candidate has a dictatorship for it ullet
- Cannot have distinct dictators for different candidates
- So v_p must be the dictator for all candidates

Circumventing GS

Approximation

Incomplete information

Computational complexity