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Announcements and Logistics

e \Welcome back!

* Assignment 3 Is due this Friday at noon

APRIL 2025

e Submit jointly with your partner SUN

* L ooking ahead: see calendar

* | will be traveling week of April 28
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Topics for Second Half

Week 7
Week 8

Week 9

Week |0

Week ||

Week |2

Finals period

Monday Tuesday | Wednesday | Thursday

Voting

Social Choice & Fair Division

Decentralized Markets

Incentives in P2P Systems
| | |

Midterm 2 and No class
| | |

Incentives in Network Routing & Blockchains
| | |

Complexity of Equilibrium
| | |
Final Project Report Due
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Project ldeas

Time to start thinking about what topic you want to do a project on

Also think about potential project partners and start discussing

Wil share suggested projects but encourage you to explore your interest

Topics/themes:

Game theory: evolutionary, sequential games, game theory & Al

Auc

lons & mechanism design with money: price of anarchy of auc

Matching markets: T TC, stable matchings, school choice, etc

Voting: strategic issues, rank aggregation etc

Distributed systems: Bitlorrent, network routing, blockchains

lons, sponsored search, etc



Research on Matching Markets




Strategic Behavior in DA

 Jruncation strategy: In
truncate their list at thel
are matched to them

nospital-proposing DA, a student can

" pbest achievable partner and ensure they

 Optimal cheating strategy when complete lists are required?

 How susceptible is the algorithm to manipulation?

e |f the number of stable partners is low, manipulation has

ittle bite

Gale-Shapley Stable Marriage
Problem Revisited: Strategic Issues
and Applications

Chung-Piaw Teo ® Jay Sethuraman ¢ Wee-Peng Tan

Stable Husbands

Donald E. Knuth, Rajeev Motwani, and Boris Pittel
Computer Science Department, Stanford University

Abstract. Suppose n boys and n girls rank each other at random. We show
that any particular girl has at least (5 — €) Inn and at most (1 + €) Inn different
husbands in the set of all Gale/Shapley stable matchings defined by these rank-
ings, with probability approaching 1 as n — oo, if € is any positive constant. The
proof emphasizes general methods that appear to be useful for the analysis of
many other combinatorial algorithms.

Marriage, Honesty, and Stability
Nicole Immorlica* Mohammad Mahdian™*

Abstract

Many centralized two-sided markets form a matching between par-
ticipants by running a stable marriage algorithm. It is a well-known
fact that no matching mechanism based on a stable marriage algo-
rithm can guarantee truthfulness as a dominant strategy for partic-
ipants. However, as we will show in this paper, in a probabilistic
setting where the preference lists of one side of the market are com-
posed of only a constant (independent of the the size of the market)
number of entries, each drawn from an arbitrary distribution, the
number of participants that have more than one stable partner is van-
1shingly small. This proves (and generalizes) a conjecture of Roth
and Peranson [23]. As a corollary of this result, we show that, with
high probability, the truthful strategy is the best response for a given
player when the other players are truthful. We also analyze equilib-
ria of the deferred acceptance stable marriage game. We show that
the game with complete information has an equilibrium in which a
(1—o0(1)) fraction of the strategies are truthful in expectation. In the
more realistic setting of a game of incomplete information, we will
show that the set of truthful strategies form a (14 o(1))-approximate
Bayesian-Nash equilibrium. Our results have implications in many
practical settings and were inspired by the work of Roth and Peran-
son [23] on the National Residency Matching Program.




Stable Matching Generalizations

 Many to one matching:

o Hospitals have a capacity ¢ and can accept that many students

o Stability defined similarly
 Similar deferred acceptance generalizes
 Many results carry over but no longer strategproof even on one side

 No stable matching is strategyproof for hospitals in hospital-proposing DA
* [f graph is general (not bipartite): stable roommates problem

 No stable matching exists!

 Approximately stable matchings are studied



Incomplete Preferences & Imbalance

. In general markets, there is competition (imbalance): n + k candidates and n jobs
« Preference lists are not complete: rank only top d choices

. Open problem: how does size of matching relate to d and k?

n
[SP'25]: For random matching markets if the preference lists are & lognlog — in

) k
size then matching is perfect w.h.p, and if shorter then not perfect w.h.p

e A tight bound on size of matching not known even for random markets

* |ncompletions and ties: the problem of finding the max-size stable matching is NP hard

* Several approximations studied, best known approximation ratio 1.5

« Most recent (LM 2021 result) shows 1 + 1/e approximation for one-sided ties



Stark Effect of Competition

 Which side of the market has an advantage in a random matching market”

« [AKL "I37] Size of core is a knife edge, and short side enjoys significant
advantage. Follow up TKMQ "217 extends to incomplete lists.
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Many More Research lopics

Nov 2024

Stable Matching with Ties: Approximation Ratios and Learning

Shiyun Lin *

Simon Mauras

Deferred Acceptance with Compensation Chains

PIOTR DWORCZAK, Stanford University, Graduate School of Business

I introduce a class of algorithms called Deferred Acceptance with Compensation Chains (DACC). DACC
algorithms generalize the DA algorithms by Gale and Shapley [1962] by allowing both sides of the market
to make offers. The main result is a characterization of the set of stable matchings: a matching is stable if

and only if it is the outcome of a DACC algorithm.

Mar 2024

Structural Complexities of Matching Mechanisms*

Yannai A. Gonczarowski' Clayton Thomas?

March 30, 2024

2021

Abstract

We study various novel complexity measures for two-sided matching mechanisms, applied
to the two canonical strategyproof matching mechanisms, Deferred Acceptance (DA) and Top
Trading Cycles (TTC). Our metrics are designed to capture the complexity of various structural
(rather than computational) concerns, in particular ones of recent interest within economics.
We consider a unified, flexible approach to formalizing our questions: Define a protocol or data

Nadav Merlis *

Vianney Perchet $

November, 2024

structure performing some task, and bound the number of bits that it requires. Our main results
apply this approach to four questions of general interest; for mechanisms matching applicants
to institutions, our questions are:

(1) How can one applicant affect the outcome matching?
(2) How can one applicant affect another applicant’s set of options?
(3) How can the outcome matching be represented / communicated?

(4) How can the outcome matching be verified?

an 2025 2021

Abstract

We study the problem of matching markets with ties, where one side of the market does
not necessarily have strict preferences over members at its other side. For example, workers do
not always have strict preferences over jobs, students can give the same ranking for different
schools and more. In particular, assume w.l.o.g. that workers’ preferences are determined by
their utility from being matched to each job, which might admit ties. Notably, in contrast to
classical two-sided markets with strict preferences, there is no longer a single stable matching
that simultaneously maximizes the utility for all workers.

We aim to guarantee each worker the largest possible share from the utility in her best pos-
sible stable matching. We call the ratio between the worker’s best possible stable utility and
its assigned utility the Optimal Stable Share (OSS)-ratio. We first prove that distributions over
stable matchings cannot guarantee an OSS-ratio that is sublinear in the number of workers.
Instead, randomizing over possibly non-stable matchings, we show how to achieve a tight log-
arithmic OSS-ratio. Then, we analyze the case where the real utility is not necessarily known
and can only be approximated. In particular, we provide an algorithm that guarantees a similar
fraction of the utility compared to the best possible utility. Finally, we move to a bandit setting,
where we select a matching at each round and only observe the utilities for matches we perform.
We show how to utilize our results for approximate utilities to gracefully interpolate between
problems without ties and problems with statistical ties (small suboptimality gaps).

2022

On Fairness and Stability in Two-Sided Matchings

Gili Karni &
Weizmann Institute of Science, Rehovot, Israel

Guy N. Rothblum =

Weizmann Institute of Science, Rehovot, Israel

Gal Yona &

Weizmann Institute of Science, Rehovot, Israel

UNBALANCED RANDOM MATCHING MARKETS WITH PARTIAL

PREFERENCES

ADITYA POTUKUCHI AND SHIKHA SINGH

ABSTRACT. Properties of stable matchings in the popular random-matching-market model have
been studied for over 50 years. In a random matching market, each agent has complete preferences
drawn uniformly and independently at random. Wilson (1972), Knuth (1976) and Pittel (1989)
proved that in balanced random matching markets, the proposers are matched to their In nth choice
on average. In this paper, we consider markets where agents have partial (truncated) preferences,
that is, the proposers only rank their top d partners. Despite the long history of the problem, the
following fundamental question remained unanswered: what is the smallest value of d that results in
a perfect stable matching with high probability? In this paper, we answer this question exactly—we
prove that a degree of In?n is necessary and sufficient. That is, we show that if d < (1 —&)In®n
then no stable matching is perfect and if d > (1 + ¢) In®n, then every stable matching is perfect
with high probability. This settles a recent conjecture by Kanoria, Min and Qian (2021).

We generalize this threshold for unbalanced markets: we consider a matching market with n
agents on the shorter side and n(a + 1) agents on the longer side. We show that for markets with
a = o(1), the sharp threshold characterizing the existence of perfect stable matching occurs when

disInn-In (Wl}z(o;T)))'
Finally, we extend the line of work studying the effect of imbalance on the expected rank of

the proposers (termed the “stark effect of competition”). We establish the regime in unbalanced
markets that forces this stark effect to take shape in markets with partial preferences.

Tiered Random Matching Markets: Rank Is
Proportional to Popularity

Itai Ashlagi
Department of Management Science and Engineering, Stanford University, CA, USA

iashlagi@stanford.edu

Mark Braverman
Department of Computer Science, Princeton University, NJ, USA
mbraverm@cs.princeton.edu

Amin Saberi
Department of Management Science and Engineering, Stanford University, CA, USA
saberi@stanford.edu

Clayton Thomas
Department of Computer Science, Princeton University, NJ, USA
claytont@cs.princeton.edu

Geng Zhao
Department of Computer Science, Stanford University, CA, USA

gengz@stanford.edu




Matching Application:
Kidney e£xchange

56 e

Home News Sport Business Innovation Culture Arts Travel Earth Audio Video Live

How an economist helped thousands get
a new kidney

16 December 2019 Share «§  Save []

lan Rose, BBC News
Berlin




Kidney Exchange

 Many people sutter from kidney failure and need a transplat

* [nthe US, around 100,000 people are on a waiting list to
recelve kidneys each year

* A third of kidney transplants come from living organ donors

e Unfortunately, having a kidney is not enough, sometimes a
patient-donor pair is incompatible

 Jwo Incompatible donor-patient pairs might be able to
participate in an exchange

: : , blood type A blood type B
« National kidney exchanges have gain momentum (i) (P,

* Kidney exchange is legal but compensation tor organ don
s illegal in US (and every country except lran) blood type B @ @ blood type A




Using TTC: Challenges

* |n an influential study in 2004, Roth Sonmez and Unver
advocated for the TTC algorithm for kidney exchange

 Agent, house palirs are now patient, donor pairs

* A total ordering over kidneys can be determined by the
Ikelihood of the transplant being successtul

 The goal is to reallocate kidneys in way that everyone is
collectively as better off as possible

 The actual problem is a bit more complicated and TTC

extensions can handle some of them (e.g., accommodating
| | blood type A blood type B
patients without donors, and deceased donors) @ @

 The biggest dealbreaker in TTC for kidney exchange is long
trading cycles blood type B @ @ blood type A



Using TTC: Challenges

 The biggest dealbreaker in TTC for kidney
exchange iIs long trading cycles

Transplants must occur simultaneou

on its offer)

sly due to

incentive issues (if surgeries for P1 and D2
nappen first, there is a risk that D1 will renege

 TCC model requires a total ordering over kidneys

In reality patients don't care which Ki

get as long as it is compatible with t

dney they

el

Binary preferences are more appropriate

Archive: Guinness World Record Organization
Distinguishes the National Kidney Registry for
World’s Longest Kidney Transplant Chain

December 3, 2020

Guinness World Records officially recognized the National Kidney Registry (NKR)
for the longest kidney transplant chain in the world. This massive chain was
supported by the combined efforts of 25 transplant centers, it included 70
surgeries, facilitated 35 transplants and was featured on ABC News's Nightline.

blood type A blood type B

blood type B blood type A




Max Cardinality Matching

* |n asubsequent paper, Roth Sonmez and Unver propose
using matchings

 The nodes of the graph are patient donor pairs and edges
are between compatible pairs that can lead to an exchange

« Matchings lead to 2-way swaps

« Model. Each agent i has a true edge set E; and can report

any subset I; € E;to a mechanism (patients can refuse
exchanges E:\ F; for any reason)

 Goal. Compute a maximum-cardinality matching and to be
DSIC (for each agent, truthfully reporting its full edge set is a
dominant strategy.)



Multiple Matchings

e Even if we collect
maximum-cardina

e A graph can have

oreferences, create a graph and find a

ity matching, there is still a wrinkle

many matchings of the same cardinality

e How do we handle tie breaks?

VS

@ @ @ @




Priority Order Over Nodes

 One way this is resolved through a priority order over nodes

e A priority maximum matching mechanism turns out to be
DSIC: no agent can go from unmatched to match by
reporting a subset of its edges

VS

@ @ @ @




Challenges

* Need for full reporting at the hospital level and need hospitals to participate in global transplants

* Objective of individual hospitals: match as many of their patients as possible, perhaps internally to
save time and ensure successful use of organs

 (Objective of society: fairness as well as social weltare (match as many patients as possible overall)

Organ Transplant System ‘in Chaos’
as Waiting Lists Are Ignored

The sickest patients are supposed to get
priority for lifesaving transplants. But more
and more, they are being skipped over.

By Brian M. Rosenthal, Mark Hansen and Jeremy White Feb. 26, 2025




Challenges

. Example left: If H; internally matches 1 and 2, and only reports 3, then 3 cannot be matched

. If both hospitals report all 6 patients, then all 3 exchanges can take place

« Example right: if H; hides patients 2 and 3 (while H, reports truthfully), what happens?

. Similarly, if H, hides 5 and 6 (while H, reports truthfully), what happens?




Research Directions

“Cannot maximize matching size and ensure strategyproofness

Research direction: how to approximate
number of matched patients internally fo

Mix and Match: A Strategyproof Mechanism for
Multi-Hospital Kidney Exchange®

Itai Ashlagi!

Department of Operations Management, Sloan School of Management, Massachusetts

Institute of Technology

Felix Fischer?

Statistical Laboratory, University of Cambridge
[an A. Kash

Microsoft Research Cambridge

Ariel D. Procaccia

Computer Science Department, Carnegie Mellon University

Abstract

As kidney exchange programs are growing, manipulation by hospitals be-
comes more of an issue. Assuming that hospitals wish to maximize the
number of their own patients who receive a kidney, they may have an incen-
tive to withhold some of their incompatible donor-patient pairs and match
them internally, thus harming social welfare. We study mechanisms for two-
way exchanges that are strategyproof, i.e., make it a dominant strategy for
hospitals to report all their incompatible pairs. We establish lower bounds

y maximize matching overall that also maximizes the
" hospitals

A Random Graph Model of Kidney Exchanges:
Efficiency, Individual-Rationality and Incentives

Panos Toulis
Harvard University, SEAS
Cambridge, MA 02138, USA

ptoulis@fas.harvard.edu

ABSTRACT

In kidney exchanges, hospitals share patient lists and receive
transplantations. A kidney-paired donation (KPD) mech-
anism needs to promote full sharing of information about
donor-patient pairs, and identify a Pareto efficient outcome
that also satisfies participation constraints of hospitals. We
introduce a random graph model of the KPD exchange and
then fully characterize the structure of the efficient outcome
and the expected number of transplantations that can be
performed. Random graph theory allows early experimental
results to be explained analytically, and enables the study
of participation incentives in a methodological way. We de-
rive a square-root law between the welfare gains from shar-
ing patient-donor pairs in a central pool and the individual
sizes of hospitals, illustrating the urgent need for the na-
tionwide expansion of such programs. Finally, we establish
through theoretical and computational analysis that enforc-
ing simple individual rationality constraints on the outcome
can mitigate the negative impact of strategic behavior by
hospitals.

David C. Parkes
Harvard University, SEAS
Cambridge, MA 02138, USA

parkes@eecs.harvard.edu

1. INTRODUCTION

The scarcity of cadaver kidneys and significant medical
benefits from live kidney donation has promoted the expan-
sion of kidney-paired donation (KPD) in recent years. The
idea is that kidney patients with one or more incompati-
ble donors, might be able to receive compatible transplants
through barter exchanges. It is typical for this to be per-
formed as a two-way exchange, which involves four (typically
simultaneous) operations.! Currently, there is a handful of
such kidney-exchange programs in the USA and several oth-
ers around the world [14]. Their expansion in large-scale has
been hitherto hindered by the ethical, logistical and even in-
centive issues they entail.

Nevertheless, there are numerous reports favoring the ben-
efit of kidney exchanges. From the medical literature, sur-
vival rates up to 100% are reported in a sample including
10 two-way, paired donations [8]. Further benefits in terms
of total saved lives can be found where larger than two-way
exchanges are considered [14]. Recent history has seen an in-
crease in (KPD) through multi-regional KPD programs [11].

Naturally enough, if we would like to represent the patient-



Voting and Social Choice




Social Choice

* [n social choice theory, we tocus on the following question:
how to aggregate preferences and make decisions that is representative of the collective interests

of a group of agents
* |ncludes topics like
e Voting to elect a winner or to aggregate preterences and select a ranking
e Participatory democracy:. committee selection, budgeting decisions
e [air division: how to divide indivisible goods tairly (cake-cutting problems)
 No money or transfers involved

 Mechanism design without money



Voting Model

» A set A of alternatives, e.g. different webpages for a search engine to rank or candidates
IN an election

. AsetN=1{1,2,...,n} of agents or voters

» Each agenti € N has a strict preference order L; alternatives A
* \oting rules can have two forms:

* Social-choice function selects a single alternative for a given preferences profile, that
s, Ly, L,, ...,L — a* wherea®™ € A

* Social-ranking function selections a rank order of alternatives for a given preference

profile, that is, Ly, L,, ..., L, — L* where L* is a ranking of A



Voting vs Matchings

 Similarity: Each participant submits a ranked preferences list and the
mechanism choose an outcome

 Alternative set A in matching problems: set of all possible matchings
 How is the mechanism design problem of matching different from voting”
* Social choice framework is general enough to capture matching markets

 Matching problems had additional "nice structure™: agents only cared
about their own allocation, not others

* |n contrast, in an election the outcome affects everyone

e Turns out that such a restriction on the possible preferences is key to
designing strategyproof mechanisms!



Common Voting Algorithms



Majority Voting

. Suppose there are only two alternates (|A | = 2)

 An obvious voting rule is majority vote:

 Elect the alternative that appears first in the largest number
of voters' lists (to avoid ties say n is odd)

* |f outputting a ranking, output the most preferred candidate
followed by the second

e |s this majority rule strategyproot?
« Suppose your preference is a > b and you submit b > a
« Can only cause the less favored candidate b to be chosen

* |sthe story so simple for more than two alternatives?



Plurality Rule

» Suppose there are at least three alternatives (|A | > 3)

e Suppose we care only about electing a winner, what is the analog
of majority rule”?

* |t some candidate appears first in more than halt of the voters'
Ist, then it is clear that she should be the winner

* However with 3 or more candidates, this may not occur
. E.g., youmay geta40/35/25 split

* [n most countries (including US), you use the plurality rule: elect
the candidate with the most first-place votes

* Thus, all voters only need to give their 1st preterence

* Questions. Is this a good voting rule? Is it strategyproof?



2000 US Presidential Election

* To consider the problems with plurality rule, we look back to the 2000 US
Presidential election (Bush vs. Gore)

 The race was very close and the outcome came down to the state of Florida

* Final vote tallies in FL (ignoring other candidates): Candidate Party Vote Total
» Only a 500 vote difference between Bush and Gore Bush Republican | 2,912,790

| | Gore Democrat | 2,912,253
e |tis generally assumed that most voters who viewed Nader Creen 07 488

Nader as their 1st choice, preferred Gore to Bush

 Nader was a "spoiler’ candidate: his presence tlipped the election result

even though he couldn't possibly have won The Presidential

 This example also shows why plurality rule is not strategyproof

Election of 2000

LRl

 (Can you see why”




Plurality Rule Pathologies

 For winner selection, plurality tends to be biased towards
‘extreme candidates’

e [or exarr

very simi

ple, suppose there are 10 'mainstrea

Mm" candidates (all

ar viewpoints) and 1 "extreme candic

ate’

 Suppose 90% of the voters prefer a mainstream candidate
to the extreme candidate, 10% preter the extreme choice

* |f the mainstream candidates manage to split the 90% of

* This makes the extreme candidate the win
N "pairwise’ comparisons, the person wou

the vote equally, they each get 9% of first-place votes

ner, even though
d never win

* This is the reason voting theorists are not a fan of Plurality rule



Ranked-Choice Voting
YES

* Alternative to plurality: also called single-transferable vote @ N z
(STV) or instant-runoff voting el AU

&he New Hork Eimes

After New York Tests a New Way of
Voting, Other Cities May Do the Same

Elected leaders and voters in New York remain split over the

ranked-choice system, but officials in Washington and elsewhere
like the results.

Che New Hork Times

THE MORNING NEWSLETTER

A Guide to Ranked-Choice Voting

The New York mayor’s race is the latest example of a ranked-

choice election. We offer a strategic explainer.

RCV implemented [J RCV adopted No RCV [l November 2020 initiative

Source: https://www.southcoasttoday.com/news/20201003/in-massachusetts-yes-on-2-pitches-ranked-choice-voting



Ranked-Choice Voting

» Alternative to plurality: also called single-transterable vote (STV) or instant-
runoff voting

* Voters submit a full ranked list (not just their first choice)

 (Majority rule) If there is some alternative a™ that receives more than 50% of
the first-place voters, then a* is the winner

 (Otherwise, the alternative with the fewest first-place votes is deleted and the
winner is computed recursively on the rest

 Base case: only two alternatives left, use majority rule
 Notice that this rule i1s not biased towards "extreme candidates”

* Various tie-breaking rules used in case of ties



Ranked-Choice Voting

» For example, consider A = {1,2,3,4} and 5 voters s.t.

Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice d a d
3rd choice C d b
4th choice b C a
Which alternative is eliminated in round 17
 d: has zero first-place votes
Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice C a b
3rd choice b C a




Ranked-Choice Voting

After ¢ Is eliminated in round 2:

Voters #1,2 | Voters #3,4,5
1st Choice a b
2nd choice b

extreme candidates

How good is this voting rule?

a is eliminated in round 3, so b wins

Ranked-choice voting is preferred as it is less susceptible to

Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice d a d
3rd choice C d b
4th choice b C a




Ranked-Choice Voting

After ¢ Is eliminated in round 2:

Voters #1,2 | Voters #3,4,5
1st Choice a b
2nd choice b

Condorcet winner?

s this rule strategyprooft?

a is eliminated in round 3, so b wins

Should we be happy with this outcome?

Can we see this in our example?

Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice d a d
3rd choice C d b
4th choice b C a




Ranked-Choice Voting

* Question 1. |s ranked-choice voting rule "fair"?
 |et'swait on a criterion for this
* Question 2. |s ranked-choice voting rule strategyproof?

 (Can you see a useful misreport in this example?

Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice d a d
3rd choice C d b
4th choice b C a




Strategy Proof

Ranked-choice voting Is not strategyproof

Intuition: there can be an incentive to influence
who gets eliminated early on, so that your
poreferred candidate gets more favored
matchups in later rounds

Compared to plurality, it seems trickier to figure
out a profitable manipulation

* |nfact, even it you know everyone else's
vote, the problem of finding a profitable
manipulation is NP hard

This is why many voting theorists prefer ranked-
choice voting

Single transferable vote resists strategic voting

John J. Bartholdi ITI' and James B. Orlin?

! School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

?Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Received December 24, 1990 / Accepted May 12, 1991

Abstract. We give evidence that Single Tranferable Vote (STV) is computationally
resistant to manipulation: It is NP-complete to determine whether there exists a
(possibly 1nsincere) preference that will elect a favored candiate, even in an
election for a single seat. Thus strategic voting under STV is qualitatively more
difficult than under other commonly-used voting schemes. Furthermore, this
resistance to manipulation is inherent to STV and does not depend on hopeful
extraneous assumptions like the presumed difficulty of learning the preferences
of the other voters. We also prove that it is NP-complete to recognize when an
STV election violates monotonicity. This suggests that non-monotonicity in STV
elections might be perceived as less threatening since it is in effect “hidden” and
hard to exploit for strategic advantage.



Fairness Criterion: Condorcet



Condorcet Criterion

. An alternate a beats b if a majority of voters prefer a to b in a pairwise comparison
 Condorcet winner: an alternative that defeats every other alternative

« A social choice function f satisfies the Condorcet criterion (is Condorcet
consistent) if f selects a Condorcet winner (whenever one exists)

 Does a Condorcet winner always exist”

« Consider A = {a, b, c} and following ballots:
o \oter1: a,b,c, Voter2: b,c,a, Voter 3: c,a, b
« b defeats c, ¢ defeats a, and a defeats b

 (Considered to be a fairness criterion in voting theory

 Question. Do ranked-choice voting and plurality satisty Condorcet criterion?



Digging Deeper

e Since ranked-choice voting is now being used in elections, there is a need to
understand its properties better

 How does it perform under practical (non-worst case) distributions”?

« Random preferences

 Mallow model of generating real world preferences?

e [s it still difficult to find a profitable manipulation®?

 How robust is the voting rule to perturbations”

 NYC Mayoral data is now public and can be used for analysis



Borda Count

 Well known voting rule: often used in sports, also used in Eurovision song contest

. Voters submit their full ranked lists: an alternate gets | A | for each first-choice vote,
|A | — 1 points for each second-choice vote, and so on and 1 point for each last-

choice vote

e Example;
« a gets 15 points, b gets 12 points Voters #1,2 | Voters #3.4 | Voter #5
| | 1st Choice a b C
« ¢ gets 10 points, d gets 13 points ond choice J , J
« Borda count would elect a 3rd choice C d b
4th choice b C a

« In contrast to ranked-choice b

e |s Borda count Cordorcet consistent”? Show in HW 7.



Positional Scoring Rules

In general, you can have different ways to score each position

. For each vote, a positional-scoring ruleonm = |A
alternatives assigns a score of @; to the alternative ranked in Jth

place. The alternative with maximum total score (across all
votes) is selected.

« Assumea; 2o, 2 ..., anda; > a,,

« E.g., plurality gives 1 point for first-choice, zero for others

 Many positional scoring rules have been studied

* You might see some on the homework/ papers you read



Borda Count

 Question. Is Borda count strategyproof?




Borda Count

* |s Borda count strategyproof?

* |dea: incentive to rank closest competitor to preterred
candidate |last

« In example, what is the Borda score of a and b?
e asscore:2-3+4+4=10
e bsscore:2*4+3 =11

. |f voter 3 moves b to the last place

e b'sscore:8+1=9




Borda Count

 Question. Does Borda count satisty Condorcet criterion?

e Question in next homework



Many Rules, Many Applications
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One to Rule them All?

 For the same input profile, plurality, Borda and ranked-choice can all output a
different winner!

 (Can you construct such an example?
 (Changing the voting rule changes the outcome of the mechanism
 [eads to contention on which voting rule is the “best”
e Voting theorists have an "axiomatic’ approach to study voting rules
e |dentity "desirable” properties that one would like
» Compare rules based on that

 Question: Is there any voting rule that is strategyproof and reasonable”



Properties of Voting Rules

o Onto: For any candidate a, there exists an input profile where a wins

L,...,7,...1n

— a

* Are Borda, plurality, ranked-choice etc onto”

* Yes, can always construct a profile to make any candidate win



Properties of Voting Rules

« Strategyproof: No voter can improve by misreporting preferences

> .

 Are Borda, plurality, ranked-choice etc strategyproot?

e No



Onto and Strategyproof

* (3 or more alternatives) onto but not strategyproot? Borda, Plurality, Ranked-choice

« (3 or more alternatives) strategyproof but not onto? Constant or restricted majority

I,...,2,...m

— a/




A Bad Voting Rule

 Dictatorship : A voting rule is dictatorial if there is a voter 1 such that the rule
always elects 1's first choice (regardless of others' preferences)

1,... .M

B

ﬂ .

* |s a dictatorship straregyproof?

* |s a dictatorship onto?



When there are 3 or more alternatives, a voting rule Is
strategyproof and onto If and only if it is dictatorial.



Monotonicity

o Definition. Sup
which for all vote

nose a is the current winner (on profile L). For all input profiles L', in

s, any candidate who was ranked below a in L is still ranked below a in

L’ then a should continue to win in L'

e Supportofa

elther increases or stays the same: a's outcome cannot get worse

« Theorem. Strategyproof <= monotone

cee — a see a — a

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



[GS Theorem] \With three or more candidates, a voting rule is strategyproof
and onto if and only If it Is a dictatorship.

Goal. Strategyproof + Onto = Dictatorship

[Proof Outline]

Part |. Strategyproof <= Monotonicity

Part 2. Monotone + Onto = Unanimous

Part 3. Monotone + Unanimous = Dictatorship




Strategyproof — Monotone

* SuUppose a rule is strategyproof but not monotone

1 2 | n 1 2 n
N ¥
d a
d — d a 9 — D
\ ; ‘ '
|

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



Strategyproof — Monotone

* SuUppose a rule is strategyproof but not monotone
o Strategyproof means:

 No voter can change their individual ranking to make a more preferred candidate win
* Not monotone means:

« Suppose a is the current winner (on profile L). For all input profiles L', in which for all
voters, any candidate who was ranked below a in L is still ranked below a in L', then
it is still possible for another candidate b to win in L'.

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



Strategyproof — Monotone

* SuUppose a rule is strategyproof but not monotone

| - n 1 2 r n
| | |
d d
d
a — a ‘X R a — b
‘ i ‘ |
I
Let k be the first voter where outcome changes
1 2 n
‘ I
3 d
F — - a

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



Strategyproof — Monotone

b cannot be above a here, why? A reverse manipulation exists!
(Contradiction to SP)

Y R— k
|
'

d

—— ) —

S0, must be below

Means b is below a here

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



Monotone — Strategyproof

. Suppose there is a voter v, that prefers b to a

o« (Consider truthful instance on left where a wins

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



Monotone — Strategyproof

. Suppose there is a voter v, that prefers b to a

o« (Consider truthful instance on left where a wins

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



Monotone — Strategyproof

: — 3 — D
d
Vk
d
By monotonicity a ; By monotonicity b
should win should win

Image credit: https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec%202.p



Strategyproof <= Monotonicity




[GS Theorem] \With three or more candidates, a voting rule is strategyproof
and onto if and only If it Is a dictatorship.

Part |. Strategyproof <= Monotonicity

[Alternate Statement] \With three or more candidates, a voting rule s monotone
and unanimous if and only If it Is dictatorship.

Part 2. Monotone + Onto = Unanimous




SP + Onto =—> Unanimous

« Definition (Unanimity). Given preference profile L, if there is an alternative a that every
voter prefers to b, then f (L) # b.

e« Lemma. SP + Onto = Unanimous

Q

O
Q



SP + Onto —> Unanimous

« Definition (Unanimity). Given preference profile L, if there is an alternative a that every
voter prefers to b, then f (L) # b.

e« Lemma. SP + Onto = Unanimous

« Proof. Suppose f(L) = b. Consider L' below. f(L) =7

Q

a
b

O
Q

O Q
O Q

|
a
b



SP + Onto —> Unanimous

« Definition (Unanimity). Given preference profile L, if there is an alternative a that every
voter prefers to b, then f (L) # b.

e« Lemma. SP + Onto = Unanimous

« Proof. Suppose f(L) = b. Consider L' below. f(L) =7

Q

a
b

O
Q

O Q
O Q

|
a
b



SP + Onto =—> Unanimous

« Definition (Unanimity). Given preference profile L, if there is an alternative a that every voter
orefers to b, then f (L) # b.

e« Lemma. SP + Onto = Unanimous

« Proof. We know f(L’) = b by monotonicity. By onto, there exists a profile L” where a wins.

a a a l
TS -
—_ ) a cos | — d
‘ a
|
L/ L//

L"to L', a's support only goes up,
by monotonicity & cannot win.



[GS Theorem] \With three or more candidates, a voting rule is strategyproof
and onto if and only If it Is a dictatorship.

Goal. Strategyproof + Onto = Dictatorship

[Proof Outline]

Part |. Strategyproof <= Monotonicity

Part 2. Monotone + Onto = Unanimous

Part 3. Monotone + Unanimous = Dictatorship

Next time



