
CSCI 357:  Algorithmic Game Theory 
Lecture 11:  Top Trading Cycles 

Shikha Singh



• HW 5 is due April 8 in class

• Assignment 3 will be on matching algorithms and due April 11 at noon 

• Hope you have a good break!! 

• Any questions?

Announcements and Logistics



Top Trading Cycle for  
Exchange Markets



Housing Exchange Market
•  agents and  houses, each agent has a strict preference over the  houses

• Suppose each agent already owns one of the  houses

• Agents are willing to exchange with others to get a better one

• Goal.  A way to reassign items to agents (perform exchanges) st.:

• No one gets a house they like worse than the one they started with

• Outcome is Pareto optimal 

• Strategyproof:  truthful reporting of preferences is a dominant strategy

• Stable / core allocation:  no subset of agents can exchange amongst themselves 
to get a better outcome

• Sometimes called the house allocation problem 
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Top-Trading Cycle [Gale & Shapley]
• Each agent report their overall preferences in the beginning

• Step 1.  Each agent (simultaneously) points to its favorite house (among 
houses remaining)

• Induces a directed graph  in which every vertex has outdegree 

•   must have at least 1 directed cycle (self loops count)

• Pick directed cycles and make all trades on it (each agent gives its house 
to the agent that points to it)

• Delete all agents and houses that were traded in Step 1

• While agents remain, go back to Step 1.
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Why is there at least one 
directed cycle?

Can an agent be involved in 
two directed cycles?



Example Instance

2

1

3 

4 

5 

6 

6 , 4

4 , 2, 1 5, 4, 2

1, 2, 3, 6

1, 2, 3, 65, 6, 3



Example Instance

2

1

3 

4 

5 

6 

6 , 4

4 , 2, 1 5, 4, 2

1, 2, 3, 6

1, 2, 3, 65, 6, 3



Example Instance

2

1

3 

4 

5 

6 

6 , 4

4 , 2, 1 5, 4, 2

1, 2, 3, 6

1, 2, 3, 65, 6, 3



Example Instance

2

1

3 

4 

5 

6 

6 , 4

4 , 2, 1 5, 4, 2

1, 2, 3, 6

1, 2, 3, 65, 6, 3



Final Output

2

1

3 

4 

5 

6 

6

3 4

1

25



TTC Properties 
• Time Complexity.   How many rounds until the algorithm terminates?

• At least one agent removed in each round, at most  rounds

• Can show that each round can be implemented in  time

• Incentive to participate:

• Allocation at least as good as the one they started with, why?

• Everyone has their own house at the end of any preference ordering

n

O(n)

TTC Invariant.  Let  be the set of agents removed in the th iteration of the TTC algorithm.   
Every agent of  receives their favorite house outside of the houses owned by  

and the original owner of any house allocated in this round is also in .
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TTC is Strategyproof 
• Proof.  Fix an agent  and preferences reported by others.   

• Define the sets  as in the TTC invariant.   Suppose  when  is truthful.

• Lemma.  Regardless of 's preferences,  cannot get a house originally owned by 

• Suppose  wants a house owned by , where where 

• To get this house,  must point to  in iteration  or earlier but this is not the case if 

• Truthful reporting gets  the best possible house they can achieve and thus is dominant strategy 
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TTC Invariant.  Let  be the set of agents removed in the th iteration of the TTC algorithm.   
Every agent of  receives their favorite house outside of the houses owned by  

and the original owner of any house allocated in this round is also in .
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TTC:  Unique Core Allocation 
• Given a strict preference raking by  agents let  denote the house they receive by running TTC

• Blocking coalition. A subset   is a blocking coalition if members of  can trade 
houses amongst themselves such that at least one member is better off without making any member 
of  worse off.  

• If , this property is the same as Pareto optimality of  TTC

• Core allocation.  An allocation is core is there is no such blocking coalition 

• Stable allocations of DA are also called "core" allocations in the literature 

• Theorem.  For any house allocation instance, the output computed by the TTC algorithm is the 
unique core allocation.
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TTC:  Unique Core Allocation 
• Theorem.  For any house allocation instance, the output computed by the TTC algorithm is the 

unique core allocation.

• Proof.   (Part 1 No other allocation can be core)  Let  be defined by the TTC invariant.   

• All agents of  receive their first choice:  this must be true in any core allocation 

• If not, the agents of  can internally reallocate and can make everyone strictly better off

• Similarly, all agents of  receive their top choice outside 

• Given that every core allocation agrees with TTC for agents in , such an allocation must also agree for 
agents in 

• Inductively,  any core allocation must agree with TTC 
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TTC:  Unique Core Allocation 
• Theorem.  For any house allocation instance, the output computed by the TTC algorithm is the 

unique core allocation.

• Proof.   (Part 2  TTC allocation is core)  Consider an arbitrary subset  

• Let   (earliest round in which a member of  receives their house

• Consider  , then  gets their favorite house among those not obtained by 

• No member of  among these, that is,

•  for 

• Because  is the first round where  anyone in  gets their house

• No reallocation within  can make  better off. 
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Summary
• TTC is awesome.   Computationally efficient, strategyproof, Pareto optimal and 

unique core allocation algorithm for exchange markets

• Given all its nice properties, we don't hear of it as much as lotteries,  why??

• Harder to explain what it does to a lay person

• Harder for individuals to predict what outcome they will get 



Leftovers on Stable Matching



Stability and Strategyproofness
• Lemma.  Truthful reporting is a weakly dominant strategy for hospitals in the 

hospital-proposing deferred acceptance mechanism

• While intuitive, this is surprisingly annoying to prove

• See Theorem 10.6.18 in http://www.masfoundations.org/mas.pdf 

• Stability is only wrt to reported preferences, if someone misreports then 
stability is defined with respect to reported preferences only 

• Is truthful reporting a dominant strategy if you are on the other-side of the 
market:  for students in a hospital-proposing DA?

• Let’s take an example

http://www.masfoundations.org/mas.pdf


Misreports from Students
• Consider the following truthful preference profile

1st 2nd 3rd

Aamir MA OH NH

Beth OH MA NH

Chris MA OH NH

1st 2nd 3rd

MA Beth Aamir Chris

NH Aamir Chris Beth

OH Aamir Beth Chris
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Misreports from Students
• Consider the following truthful preference profile

• Produces the following stable matching:

• (MA, Beth), (NH, Chris), (OH, Aamir)
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Misreports from Students
• Class exercise.  Can one of the students misreport their preferences to end up 

with a better match?

• Does it every make sense to misreport about your top choice?

• What about lower order misreports?
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Misreports from Students
• Suppose Aamir misreports (swaps NH and OH)
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Misreports from Students
• Suppose Aamir misreports (swaps NH and OH) 

• New matching:  (MA, Aamir), (NH, Chris), (OH, Beth) 

• Aamir improved from NH to top choice MA!

1st 2nd 3rd

Aamir MA NH OH

Beth OH MA NH

Chris MA OH NH

1st 2nd 3rd

MA Beth Aamir Chris

NH Aamir Chris Beth

OH Aamir Beth Chris

New Preference Profile 

DA is not strategyproof (the 
receiving side can misreport and 

achieve a better match)



Can't Have Both
• Can there be a mechanism that is both strategy proof and stable? 

• Unfortunately, no 

• Theorem.  No mechanism for two-sided matching is both stable and strategyproof. 

• Proof developed in Homework 6 

• Many interesting questions:  

• How much information is needed to find a useful manipulation? 

• What is the optimal manipulation cheating strategy  

• Empirically manipulations do not play a large role 

• If not many stable partners, can't gain much



The Match and its Evolution
• NRMP Revisited.  The original 1952 implementation of the DA 

algorithm was the hospital-optimal version 

• Students protested that the match was favoring hospitals



The Match and its Evolution
• A new algorithm was adopted in 1997  

• Primary motivated was to give couples the option to get 
placed in geographically nearby programs 

• But in addition was made student-proposing  

• Changes incentives for hospitals, but did it make a difference? 

• Empirically, at least for the datasets arising in NRMP, less than 
1% of the hospitals could have benefited by misreporting



Stable Matching Summary
• Hospital-proposing DA is hospital-optimal and student pessimal, among all stable matchings 

(regardless of the order of proposals)
• Stability matchings are not Pareto optimal overall, but are Pareto optimal among the set of 

all stable matchings
• Stable matchings are only strategyproof for the proposing side and cannot be strategyproof 

for both sides
• Lots of generalizations:

• Incomplete preferences and ties
• Stable "roommates" problem
• Many-to-one stable matchings
• Approximately stable matchings



Stable Matching Research

2021

2022

Nov 2024

Jan 2025

2021

Mar 2024



Matching Application:   
Kidney Exchange



Kidney Exchange
• Many people suffer from kidney failure and need a transplat 

• In the US in 2013, around 100,000 people were on a waiting list to 
receive kidneys  

• A third of kidney transplants come from living organ donors 

• Unfortunately, having a kidney is not enough, sometimes a patient-
donor pair is incompatible  

• Two incompatible donor-patient pairs might be able to participate in 
an exchange 

• National kidney exchanges have gain momentum 

• Kidney exchange is legal but compensation for organ donation is 
illegal in US (and every country except Iran) 

• Ideal application for mechanism design without money



Using TTC:  Challenges
• In an influential study in 2004, Roth Sonmez and Unver 

advocated for the TTC algorithm for kidney exchange 

• Agent, house pairs are now patient, donor pairs 

• A total ordering over kidneys can be determined by the 
likelihood of the transplant being successful 

• The goal is to reallocate kidneys in way that everyone is 
collectively as better off as possible 

• The actual problem is a bit more complicated and TTC 
extensions can handle some of them (e.g., accommodating 
patients without donors, and deceased donors)  

• The biggest dealbreaker in TTC for kidney exchange is long 
trading cycles



Using TTC:  Challenges
• The biggest dealbreaker in TTC for kidney exchange is long 

trading cycles 

• Transplants must occur simultaneously due to incentive 
issues (if surgeries for P1 and D2 happen first, there is a 
risk that D1 will renege on its offer) 

• TCC model requires a total ordering over kidneys 

• In reality patients don't care which kidney they get as 
long as it is compatible with them 

• Binary preferences are more appropriate  

• These challenges triggered further research into a  
DSIC mechanism for kidney exchange



Max Cardinality Matching
• In a subsequent paper, Roth Sonmez and Unver propose 

using matchings  

• The nodes of the graph are patient donor pairs and edges 
are between compatible pairs that can lead to an exchange 

• Matchings lead to 2-way swaps  

• Model.  Each agent  has a true edge set  and can report 
any subset  to a mechanism (patients can refuse 
exchanges  for any reason) 

• Goal.  Compute a maximum-cardinality matching and to be 
DSIC (for each agent, truthfully reporting its full edge set is a 
dominant strategy.)

i Ei
Fi ⊆ Ei
Ei∖Fi



Multiple Matchings
• Even if we collect preferences, create a graph and find a 

maximum-cardinality matching, there is still a wrinkle 

• A graph can have many matchings of the same cardinality  

• How do we handle tie breaks?



Priority Order Over Nodes
• One way this is resolved through a priority order over nodes 

• A priority maximum matching mechanism turns out to be 
DSIC: no agent can go from unmatched to match by 
reporting a subset of its edges 



Challenges 
• Need for full reporting at the hospital level  

• Objective of individual hospitals: match as many of their 
patients as possible 

• Objective of society:  match as many patients as possible 

• Need for approximately optimal DSIC mechanisms

Incentives of H1 and H2 are at 
odds: no DSIC mechanism that 

maximizes cardinality of matching


