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1 Game Theory Background

At a high level, a game consists of players, the actions available to the players and the utilities
the players get from each outcome (a sequence of action played). A game representation depends
on whether the game is a simultaneous-move game (all players act at once) or a sequential game
(players act over rounds). For this part of the course, we will only consider simulateneous move
games. Such games are represented in normal form (with utilities described in a matrix).

Definition 1. A finite, normal-form game (N, u,A), is defined by the following:

• Player set N = {1, 2, . . . , n}

• Action set Ai that are a set of actions available to player i, for each i ∈ N

• A = A1× · · · ×An are the set of action profiles of all n players and are also referred
to as the outcomes of the game

• Utility function ui : A → R maps each action profile that can be played to a payoff

In game theory, we make two assumptions:

• Rationality. Each player’s goal is to maximize their own utility.

• Rationality is Common-Knowledge. Each player knows that everyone else is rational and
that everyone else knows that they they are rational and that they know that everyone else
is rational and so on, infinitely.

Example. (Prisoner’s Dilemma) A classic example of a game where two alleged criminals
are questioned in separate rooms and each player has two actions:

• Cooperate (C): stay silent and not admit to anything

• Defect (D): testify against the other person

If both cooperate (C, C), then each serves 1 year in prison for minor offense. If one cooperates
and other defects (C, D) or (D, C), then the confessor goes free while other person gets a
long prison sentence. If both defect (D, D), then each serve 3 years in prison. Normalizing
the utilities, we can represent this game in normal-form with a row-player and column-player
as follows.

C D

C 4, 4 0, 5

D 5, 0 2, 2
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A global guarantee of an outcome of a game that is often desirable is called Pareto-optimality.

Definition 2. Consider a finite game with outcomes O.

• An outcome o ∈ O Pareto-dominates an outcome o′ ∈ O, if ui(o) ≥ ui(o
′) for all

players i and uj(o) > uj(o
′) for a specific player j.

• An outcome o is Pareto-optimal, if no other outcome Pareto-dominates it.

In Prisoner’s Dilemma (Example ), the outcome (D,D) is Pareto-dominated by (C,C) and the
other three outcomes are Pareto-optimal.

1.1 Solution Concepts

When rational players act to maximize their utility in a game, the process of determining what
outcome will likely occur is called solving the game. Different “solution concepts” or “equilibrium
concepts” are used in game theory to justify likely behavior. In this section, we will review two
most popular solution concepts.

Dominant-strategy equilibrium. The strongest possible guarantee on player behavior is given
by the existence of dominant-strategy equilibrium (DSE). Intuitively, in a DSE, each player can
maximize their utility by playing a dominant action that is agnostic to the actions played by
others.

An important notational shorthand in game theory is A−i = A1 × · · · × Ai−1 × Ai+1 · · · × An

which is the set of all possible action profiles excluding player i. Similarly, a−i =

(a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i represents a specific action profile of all players except
i.

Definition 3. An action profile a∗1, . . . , a
∗
n) is a dominant-strategy equilibrium (DSE) if

and only if for all players i:

ui(a
∗
i , a−i) ≥ ui(a

′
i, a−i) for all a′i ∈ Ai and for all a−i ∈ A−i

In Prisoner’s Dilemma (Example ), the unique DSE is (D,D) which is the only non-Pareto
optimal outcome, explaining the dilemma—what is good for individuals sometimes is not good
for the group.
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A DSE is a very strong gaurantee but may not always exist. The second-best solution concept
a game can admit is called a pure-Nash equilibrium.

Definition 4. An action profile a∗1, . . . , a
∗
n) is a pure Nash equilibrium (PNE) if and only

if for all players i:
ui(a

∗
i , a−i) ≥ ui(a

′
i, a−i) for all a′i ∈ Ai

The action a∗i is called the best response of player i to the action profile a−i of others.

Thus, in a pure Nash equilibrium, each player plays a best response to others and no player has
any incentive to deviate unilaterally to improve their utility.

The Nash equilbirium concept has several challenges:

• A pure Nash equilibrium may not always exists in a game.

• Many pure Nash equilibrium might exist (causes the problem of equilibrium selection—
which equilibrium should players choose?).

• Computing a Nash equilibrium is a computationally difficult problem.1

Incomplete-Information Games and Bayes Nash. The definition of Nash equilibrium requires
each player to know a−i, the actions other players are playing. The assumption that rationality
is common knowledge requires each player to also know the utility structure of others. The
games where players have full information of the payoff structure of others are called complete-
information games. In an incomplete-information game, each player i may have a private type
ti that affects their utility. The concept of Nash equilibrium can be extended to such games by
assuming that the types ti are drawn identically and independently (i.i.d.) from a distribution
G that is common knowledge.

A strategy si of a player i now is a function that maps their private type ti to an action and
their goal is to maximize their expected utility for a strategy profile s = (s1, . . . , sn), defined
as:

E[ui(s)] =
∑
t−i

ui(s|t−i) · Pr(t−i)

Definition 5. Consider a Bayesian game where each player i has a private types ti that is
drawn i.i.d. from a distribution G. Then the strategy profile s∗1, . . . , s

∗
n) is a pure Bayes

Nash equilibrium if and only if all players i maximize their interim expected utility, that

1It is PPAD-complete, a notion of hardness we will discuss later.

Page 4



Mechanism Design with Money CS 357 Spring 2025

is,
E[ui(si, s−i)] ≥ E[ui(s′i, s−i)] for all s′i

where the expectation is over the private types t−i and each player knows their own type ti.
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2 Single-Item Auction

The first market we consider is a single-item market with n buyers {1, . . . , N}. Each buyer has
a private valuation vi ∈ R for obtaining the item.

In these markets, an allocation rule x = (x1, . . . , xn) defines who gets what and a payment
rule p = (p1, . . . , pn) defines who pays what. For a single item auction, if buyer j gets the item
then xj = 1 and xi = pi = 0 for all i ̸= j. The utility of a bidder i is defined as ui = xi · vi − pi.
That is, their utility is zero if they do not get allocated (and pay nothing) and otherwise it is
their value minus their price.

To define an auction for a single-item auction, we need to determine the winner j should be and
what they payment pj they should be charged. The global optimization objective is to allocate
the item so as to maximize social welfare, defined as,

∑n
i=1 xivi.

For a single-item setting, this means the goal is to allocate to the highest-valued buyer. However,
buyer valuations are private so the auction needs to elicit these from the buyers in the form of
bids. A bid bi of a buyer (now called bidder) i is their alleged value vi. In a truthful bid profile,
bi = vi for all i.

We will consider sealed-bid auctions, where bidders submit their bids privately to the seller in
the beginning of auction.

2.1 Second-Price (Vickrey) Auction

A second price auction is defined as follows:

• Each bidder i submits their private bid bi, for i ∈ {1, . . . , N}

• The item is allocated to the highest bidder j = argmaxi∈Nbi.

• The bidder j is charged the payment equal to the second-highest bid pj = maxi ̸=j bi.

A second-price auction admits truthful bidding as its unique dominant-strategy equilibrium.

Theorem 1. Truthful bidding is a dominant-strategy equilibrium of the second price auction.

Proof. Consider an abritrary bidder i with valuation vi. Fix b−i of other bidders. We show
that setting bi = vi maximizes bidder i’s utility (among all possible bids they can submit)
for all b−i.

Let B = maxj ̸=i bj be the maximum bid among b−i. There are two possible outcomes for
bidder i with valuation vi.
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Case 1. vi ≥ B. The maximum possible utility the bidder can obtain in this case is by
winning and paying B, that is, vi −B.

Case 2. vi < B. The maximize possible utility the bidder can obtain in this case is 0

because if they win they will have to pay B and get negative utility.

In both cases, setting bi = vi, gives bidder i the maximize possible utility and holds for all
b−i. Thus, truthful bidding is a DSE of the second-price auction.

An auction or mechanism dominant-strategyproof if truthful bidding is a dominant-strategy
equilibrium of the resulting game.

As the item is allocated to the highest-valued bidder and truthful bidding is a DSE, the second-
price auction maximizes social welfare at DSE.

2.2 First-Price Auction

A first-price auction is defined as follows:

• Each bidder i submits their private bid bi, for i ∈ {1, . . . , N}

• The item is allocated to the highest bidder j = argmaxi∈Nbi.

• The bidder j is charged their bid bj .

A first-price auction is not dominant strategyproof. To see this, consider the bidder with the
highest valuation and assume everyone else bids their value. If the bidder bids bi = vi, then their
utility is zero. However, if they bid bi = maxj ̸=i vj , their utility is vi−maxj ̸=i vj which is strictly
positive.

We analyze bidder behavior in a first-price auction in a restricted setting. In particular, assume
that each bidders value vi is drawn i.i.d. from a uniform distribution on the interval [0, 1]. To
derive the Bayes-Nash equilibrium strategy, we first make the assumption that each bidder sets
their bid proportional to their value, that is, bi = α(n) · vi. Later, we verify that this assumption
is in fact correct.

Deriving BNE of First-Price Auction. Consider bidder 1 and assume that bi = αvi for all
other bidders 2, . . . , n. Let E(u1) denote the expected utility of bidder 1, assuming all bidder
values are drawn i.i.d from the uniform distribution on [0, 1].
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E(u1) = (v1 − b1) · Pr(1 wins with bid b1) + 0 · Pr(1 loses with bid b1) (1)

= (v1 − b1) · Pr[b1 ≥
n

max
i=2

bi] (2)

= (v1 − b1) · Pr(b1 ≥ b2 ∩ · · · ∩ b1 ≥ bn) (3)

= (v1 − b1) · Pr(b1 ≥ αv2 ∩ · · · ∩ b1 ≥ αvn) (4)

= (v1 − b1) · Pr
(
v2 ≤

b1
α

)
· · ·Pr

(
vn ≤ b1

α

)
(5)

= (v1 − b1) ·
(
b1
α

)n−1

(6)

(7)

Step follows from the fact that bi = αvi for i = 2, . . . , n by our assumption and that the values
are drawn independently. Step 5 follows from the fact that Pr(x ≤ k) = k when x is drawn from
a uniform distribution on [0, 1].

To find bid b1 that maximizes E(u1), we take the derivative wrt to b1 and set it to zero.

E′(u1) = v1 · (n− 1)
bn−2

αn−1
− n · b

n−1

αn−1
= 0 (8)

(9)

Solving the above gives us that b1 =
n−1
n · v1.

Theorem 2. Assume each of the n bidders have values drawn i.i.d. from uniform distribution
on [0, 1]. Then, the strategy si = n−1

n · vi for each bidder i is a symmetric Bayes Nash
equilibrium of the sealed-bid first-price auction.

Proof. This proof is analogous to the derivation with the difference that we take an arbitrary
bidder j and fix bj = n−1

n vj for all bidders i ̸= j. Considering the expected utility of j as
before and differentiating it to verify that the best response is bi = n−1

n vi finishes the
proof.

We conclude with the following properties of first-price auction.

• The above analysis generalizes to arbitrary i.i.d. distributions (beyond uniform).

• The Bayes Nash equilibrium (BNE) of the first-price auction is unique.
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• At the unique BNE, the first-price auction maximizes the social welfare (this is because
the highest valued bidder wins the auction).

• At the unique BNE, the first-price auction generates the same revenue as the second-price
auction; see Theorem 3.

2.3 Revenue Equivalence

In general, revenue equivalence in auction theory states that if two auctions have the same
allocation at equilibrium and same bidder valuation distribution, then they also generate the
same revenue.

We show this for the special case of first and second-price auction for the single-item case. We
first define the kth order-statistic and use it in the proof.

Definition 6. Let X1, . . . , Xn be n independent samples drawn identically from the uniform
distribution on [a, b]. Let X(k) denote the kth highest value among the n samples, called
the kth-order statistic. Then,

E[X(k)] = a+
n− (k − 1)

n+ 1
· (b− a)

Theorem 3. If bidder’s values are drawn i.i.d. from the uniform distribution on [0, 1], then
the expected revenue (at equilibrium) of the first-price auction is equal to the expected
revenue of the second-price auction (at equilibrium).

Proof. Relabel the bidder indices such that v1 ≥ v2 ≥ . . . vn. Let E[R1] and E[R2] be the
expected revenue of the first and second price auctions respectively. Then,

E[R2] = E[v2] =
n− 1

n+ 1

Using Theorem 2 and linearity of expectation, the expected revenue of the first-price auction
is

E[R1] = E[b1] = E
[
n− 1

n
v1

]
=

n− 1

n
E[v1] =

n− 1

n
· n

n+ 1
=

n− 1

n+ 1
.
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3 Myerson’s Lemma for Single-Parameter Domains

A generalization of a single-item market is a market with multiple items where each bidder’s
valuation vi for their allocation is captured by a single number. Some examples of this setting:

• k identical items, with each bidder’s vi is their value for obtaining a single copy of the item

• each bidder has a value vi per “unit” of allocation, e.g. vi-per-click in a sponsored-search
auction, and their allocation determines how many units they receive

• 0-1 allocations with constraints: each bidder either “wins” or “loses” their desired subset,
or each bidder is either included or not included in a Knapsack auction, etc.

For single-parameter settings, Myerson’s lemma provides a tight characterization of allocation
and payment rules that enforce dominant-strategyproof behavior.

Definition 7. An allocation rule x = (x1, . . . , xn) for a single-parameter domain is monotone-
non-decreasing if for every bidder i and bids b−i of other bidders, i’s allocation xi(z, b−i) is
non-decreasing in i’s bid z.

Theorem 4. (Myerson) Fix a single-parameter setting. We state the result for the continuous
case.

• An allocation rule x can be made dominant strategyproof if and only if x is monotone
(non decreasing).

• If x is monotone, there is a unique payment rule p such that (x, p) is dominant strat-
egyproof. This payment rule is given by the following expression for all i

pi(z, b−i) = z · xi(z, b−i)−
∫ z

0
xi(z, b−i)dz

where player i bids z. Keeping b−i fixed, we can simplify:

pi(z) = z · xi(z)−
∫ z

0
xi(z)dz

This assumes that pi(0) = 0.

Suppose the allocation function x is piecewise-constant and there are ℓ points at which the
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allocation "jumps" before bid z, the payment at bid z given by Theorem 4 becomes:

pi(z) =
ℓ∑

i=1

zi · [jump in xi at zi]

.

3.1 Proof of Myerson’s Lemma

We break up the proof of Myerson’s lemma in several parts.

Step 1. If x is dominant strategyproof then x must be monotone non-decreasing.

Consider a bidder i with value v that bids v′. For truthful bidding to be the dominant strategy
for i, their utility from being truthful should be at least as high as misreporting, that is,

v(x(v)− p(v)) ≥ v(x(v′)− p(v′)) for all v, v′ (10)

Assuming that strategies are onto, we consider two cases. Assuming wlog that z1 < z2.

• Case 1. v = z1 and bidder overbids z2. Inequality 10 in this case becomes:

z1(x(z1)− p(z1)) ≥ z1(x(z2)− p(z2) (11)

• Case 2. v = z2 and bidder underbids z1. Inequality 10 in this case becomes:

z2(x(z2)− p(z2)) ≥ z2(x(z1)− p(z1) (12)

Adding both of the above iequalities and rearranding, we get:

(z2 − z1) · (x(z2)− x(z1)) ≥ 0

Since z2 > z1,this only holds if x(z2) ≥ x(z1) and thus x must be monotone non-decreasing.

Step 2. If x is dominant strategyproof and monotone, then there is a unique payment
rule given by Theorem 4.

Using Inequalities (11) and (12), we can derive and upper and lower bound on the payment
difference between bids z1 and z2, that is,

z2 · (x(z2)− x(z1)) ≥ p(z2)− p(z1) ≥ z1 · (x(z2)− x(z1))
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We can visualize these upper and lower bounds in the picture from Hartline [2] below.

To finish this part of the proof set z1 = 0 and z2 = z and we derive the payment to be the
shaded area above the allocation curve at z, or mathematically:

pi(z) = z · xi(z)−
∫ z

0
xi(z)dz

Step 3. If the allocation x is monotone and the payment rule p is as given by the expression
in the lemma then, (x, p) is dominant strategyproof.
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This proof is entirely by picture from Hartline [2]. The left column shows (shaded) the
welfare, payment, and utility of the bidder playing action b(v = z2). The right column
shows (shaded) the same for the bidder playing action b(v† = z1). The final diagram
shows (shaded) the difference between utility for these strategies. Monotonicity implies
this difference is non-negative.
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3.2 Application of Myerson’s Lemma

Myerson’s lemma gives a general characterization of all strategyproof mechanisms (x, p) for
single-parameter domains. Specific applications of it are described below.

Critical bid for 0-1 allocations. When allocations are 0/1, that is, for each bidder xi = 0 or
xi = 1, then the Myerson payment simplifies to charging each bidder their critical bid, the
lowest bid they could have submitted and still won. More formally,

p(bi,b−i) =

{
0 if xi(bi,b−i) = 0

b∗i (b−i) if xi(bi,b−i) = 1

where b∗i (b−i) is the bidder i’s critical bid, that is, the lowest bid at which i gets a non-zero
allocation.

Welfare-maximizing allocation rules. Consider an arbitrary single-parameter environment,
with feasible allocation X = (x1, x2, . . . , xn) ∈ Rn. Given bids b = (b1, . . . , bn), the welfare-
maximizing allocation rule is x(b) = argmax(x1,...,xn)∈X

∑n
i=1 bixi. In Assignment 2 (Problem

1), we prove that this allocation rule is monotone. Thus, such allocation rules can always be
paired with the Myerson payment scheme to give a dominant-strategyproof mechanism.

Consider a welfare maximizing allocation rule x(b) and feasible allocations X that contain only
0-1 vectors—that is, each bidder either wins or loses.

Given feasible allocations containing 0-1 vectors, we can identify each feasible allocation with
a “winning set” of bidders S∗ (the set of bidders i with xi = 1 in that allocation). As proved
in Assignment 2 (Problem 2), the critical bid payment of the winning bidders in S∗ given by
Myerson then becomes equal to their externality, which is the difference between:

(i) the maximum welfare of a feasible allocation that excludes i2—that is, the maximum
welfare that can be generated if i was not present

(ii) the welfare
∑

j∈S∗\{i} bj generated by the winners (other than i) in the chosen outcome
S∗—that is, the welfare that is generated (by others) given i wins

Sponsored-search auction. In the sponsored search auction problem, there are k slots, the jth
slot has a click-through rate (CTR) of αj (non-increasing in j), and the utility of bidder i in slot
j is αj(vi − pj), where vi is the value-per-click of the bidder and pj is the price charged per-click
in slot j.

2You should assume that there is at least one such feasible allocation.
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The following algorithm, the Vickrey-Clarke-Groves (VCG) auction, maximizes welfare and its
payment is derived using Myerson’s Lemma.

Vickrey-Clarke-Groves (VCG) auction for sponsored search.

1. Rank the advertisers from highest to lowest bid-per-click bi; assume without loss of gener-
ality that b1 ≥ b2 ≥ . . . ≥ bn.

2. For i = 1, 2, . . . , k, assign the ith bidder to the ith slot.

3. For i = 1, 2, . . . , k, charge the ith bidder a price-per-click given by Myerson’s formula:

pi =
k∑

j=i

bj+1

(
αj − αj+1

αi

)

3.3 Characterizing Bayes Nash Equilibrium

Myerson’s lemma also generalizes to Bayes Nash equilibrium. In particular, it states that a
strategy profile s is a Bayes’ Nash equilibrium in (x, p) if and only if for all players i,

• the allocation probability xi is monotone non decreasing, and,

• player i’s expected payment is given by

pi(z) = z · xi(z)−
∫ z

0
xi(z)dz

Revenue Equivalence. The main takeaway of Myerson’s lemma characterizing the BNE in
single-parameter settings is that the expected payment only depends on the allocation probability.

Corollary. (Revenue Equivalence) If two mechanisms have the same distribution of agent
values and same allocation (at BNE), then they generate the same revenue.

One application of this corollary is that it lets us reason about the equilibrium of auctions
that are harder to analyze by equating their expected payments at equilibrium to that of a
strategically-simple dominant-strategyproof auction where bidders bid their value.

Steps to Use Revenue Equivalence for BNE. As an example of how revenue equivalence is
useful to “guess” the BNE of an auction, let’s use it to recreate the BNE for first-price auction.
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• Step 1. Guess what the allocation might be in a Bayes-Nash equilibrium (usually a
welfare-maximizing allocation). In this case, we guess that the highest-valued bidder wins
in a first-price auction at equilibrium.

• Step 2. Write down the expression for the expected payment of a bidder as a function of
their value in a strategically-simpler auction (usually the dominant-strategyproof version).
In this case, consider bidder i, their expected payment in a second-price auction is

E[pi] = E[second highest bid | vi wins] · Pr[vi wins] + 0 · Pr[vi loses]

= E[second highest value | vi wins] · Pr[vi wins]

= E[X(1) in n− 1 samples from [0, vi]] · Pr[vi wins]

=
n− 1

n
vi · Pr[vi wins]

Here the last equality is because the expected value of the second-highest bidder given vi is
the highest bidder is the same as the expected value of the first-order statistic when n− 1

samples are drawn from a uniform distribution on [0, vi]. Let X1, . . . , X
′
n denote n′ samples

drawn i.i.d. from the uniform distribution on [0, b]. Let Xk be the kth largest value among
them, then the last step follows from using E[X(k)] =

n′−(k−1)
n′+1 b with n′ = n− 1 and k = 1.

• Step 3. Write the expression for the expected payment in terms of the strategy of the
bidder in the auction you are trying to solve for the BNE. In this case, a bidder i pays
their bid in a first-price auction if they win and pay zero otherwise. Assuming a bidder i

shades their bid down by a factor α of their value, their expected payment is

E[pi] = E[bi | vi wins] · Pr[vi wins] + 0 · Pr[vi loses]

= E[αvi | vi wins] · Pr[vi wins] = αvi · Pr[vi wins]

In the last step, E[αvi] = αvi because of linearity of expectation and because bidder i

knows their own value (the expected utility is over their uncertainty of other bidders bids
and values).

• Step 4. Solve for the BNE strategy by equating the expected payments between the
two auctions. In this case, setting the expected payments equal in first and second price
auction, assuming that the probability of winning is the same in both, we get α = n−1

n ,
and thus revenue equivalence suggests that s(vi) =

n−1
n vi should be the symmetric Bayes

Nash equilibrium of the first-price auction with n bidders.
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• Step 5. Finally, verify that this strategy profile computed in Step 4 is actually a symmetric
BNE. We did this step in lecture for the first-price auction.

Page 17



Mechanism Design with Money CS 357 Spring 2025

4 General Valuation: VCG Mechanism

Consider a general mechanism to allocate M = {1, . . . ,m} different items. Then, there are 2m

possibel subsets that a bidder can receive and they may have a different valuation for each such
allocation. In such a general combinatorial auction, it can be challenging to even ask bidders to
submit such valuation, let alone compute on it.

For a more restricted example, but still more general than the single-parameter setting, consider
the unit-deman market.

Example. (Unit-Demand Market) Consider a market with m items and n bidders such that
each bidder i has a valuation vij for item j, for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Our goal is to find a welfare-maximizing, dominant-strategyproof mechanism for such markets.
Surprisingly, such a mechanism always exists, even for these general markets.

Vickrey-Clarkes-Grove (VCG) Mechanism The VCG mechanism is defined as follows. Let A

be the set of feasible outcomes.

• Collect sealed bids b = b1,b2, . . . ,bn, where each bi is a vector indexed by |A| describing
the bidders valuation for each possible outcome.

• Find a welfare-maximizing allocation a∗(b) = argmaxa∈A
∑n

i=1 bi(a), assuming that the
bids are truthful.

• Charge each bidder their externality, which is the welfare loss they impose on others by
their presence, that is,

pi(b) = maxa−i∈A−i

∑
j ̸=i

bj(a−i)︸ ︷︷ ︸
without i

−
∑
j ̸=i

bj(a
∗)

︸ ︷︷ ︸
with i

Theorem 5. The VCG mechanism is dominant strategyproof.

Proof. Fix i and bids b−i. Suppose the chosen outcome is a∗. Then, the utility of i for
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outcome a∗ is:

ui(a
∗) = vi(a

∗)− pi(b) = vi(a
∗) +

∑
j ̸=i

bj(a
∗)− maxa−i∈A−i

∑
j ̸=i

bj(a−i)

Let A = vi(a
∗) +

∑
j ̸=i bj(a

∗) and B = maxa−i∈A−i

∑
j ̸=i bj(a−i). Bidder i’s goal is to

set bi to maximize A − B. Since B does not depend on bi, this reduces to setting bi so
as to maximize A. This is exactly the allocation that is chosen by welfare-maximizing rule
assuming bidders are truthful. Thus, bidder i maximizes their utility by setting bi = vi.

Example. Suppose you are organizing a job fair and each firm has a different preference of
the booth assignment they receive There are three firms and three possible locations in the
room front (F ), middle (M), rear (R) They have the following private valuation profiles:

F M R

1 10 2 1
2 100 100 100
3 50 45 40

We can use VCG to compute allocation and payments. Assuming truthful bidding, the
welfare-maximizing allocation is (1, F ), (2, R), (3,M), that generates total welfare 10+100+

45 = 155. Without firm 1, the allocation would be (2,M/R), (3, F ) with welfare 100+50 =

150. Thus p1 = 150−(155−10) = 5. Without firm 2, the allocation would be (1, F ), (3,M)

with welfare 55, thus p2 = 55 − (155 − 100) = 0. Finally, without firm 3, the allocation
would be (1, F ), (2,M/R) with welfare 110. Thus, p3 = 110− (155− 45) = 0.
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5 Case Study: Sponsored Search Auctions

As the main application of the theory of markets-with-money, we looked at a case study of
sponsored search auctions by Edelman et al. [1].

Recall that in a sponsored search auction problem, there are k slots, the jth slot has a click-
through rate (CTR) of αj (non-increasing in j), and the utility of bidder i in slot j is αj(vi−pj),
where vi is the value-per-click of the bidder and pj is the price charged per-click in slot j.

The unique welfare-maximizing dominant-strategyproof mechanism for this problem is the VCG
mechanism described in Section 3.2. The mechanism implemented by Google however, and
analyzed by Edelman et al. [1] is the Generalized Second Price (GSP) auction.

The generalized-Second-Price (GSP) auction is defined below:

Gneralized Second Price (GSP) Auction.

1. Rank the advertisers from highest to lowest bid; assume without loss of generality that
b1 ≥ b2 ≥ . . . ≥ bn.

2. For i = 1, 2, . . . , k, assign the ith bidder to the ith slot.

3. For i = 1, 2, . . . , k, charge the ith bidder a price of bi+1 per click.

Understanding Edelman et al. (2007). Edelman et al. (2007) analyze this GSP auction
formally and show that it has a canonical equilibrium that is equivalent to the dominant strate-
gyproof outcome of the VCG auction.

Their analysis can be broken down and formalized in several parts.

Lemma 1. (GSP is not Dominant-Strategy Proof) For every k ≥ 2 and sequence α1 ≥
. . . αk > 0 of CTRs, the GSP auction is not dominant strategyproof (that is, truthful
bidding is not a dominant strategy).

Proof. To show that GSP is not dominant-strategyproof, it is sufficient to show that there
exists some valuation profile (v1, v2, . . . , vn), bid profile (b1, . . . , bn) and bidder i, such that,
the utility ui(bi, b−i) of i by bidding bi ̸= vi is greater than the truthful utility ui(vi, b−i).

Assume that v1 ≥ v2 ≥ . . . ≥ vn. Consider a bidder i ≥ 3 and assume that all other bidders
are bidding truthful. When i is truthful, they are in slot i and pay vi+1 as payment. On the
other hand, if i misreports to get slot i+1, their payment is vi+2. We construct a valuation
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profile where this misreport improves i’s utility proving the claim.

αi(vi − vi+1) < αi+1(vi − vi+2) (13)

Now suppose that vi+1 = vi+2 + 1 and vi = αi+1

2(αi−αi+1)
+ vi+2 + 1. Then, this satisfies

Inequality 13. Thus, for any CTRs, there exists a valuation profile and bid profile such that
some bidder benefits from misreporting showing that GSP is not dominant-strategyproof.

5.1 Nash Equilibrium of GSP

First, we look at the bid profiles that form a Nash equilibrium of the GSP auction, assuming
each player has full information about the bids and values of others.

Fix CTRs for slots and valuers-per-click for bidders. We can assume that k = n by adding dummy
slots with zero CTRs (if k < n) or dummy bidders with zero value-per-click (if k > n).

Lemma 2. A bid profile b is a Nash equilibrium of GSP if no bidder can increase her utility
by unilaterally changing her bid. Verify that this condition translates to the following
inequalities, under our standing assumption that b1 ≥ b2 . . . ≥ bn for every i:

αi(vi − bi+1) ≥ αj(vi − bj) for every higher slot j < i (14)

αi(vi − bi+1) ≥ αj(vi − bj+1) for every lower slot j > i (15)

Proof. Consider a bidder i with bid bi in slot i and fix all other bids b−i. The utility of
bidder i for being truthful is ui = vi(αi − bi+1).

Suppose bidder i now wants to misreport and target slot j above i (that is, j < i). To
achieve this, i has to bid b′i ≥ bj and b′i ≤ bj−1, and their payment then becomes bj . The
utility i gets from this deviation is u′i = vi(αj − bj).

Thus, for a Nash equilibrium this deviation should not give better utility than truthful
bidding:

αi(vi − bi+1) ≥ αj(vi − bj) for every higher slot j < i

Now, suppose bidder i wants to misreport and target a slot j below i (that is, j > i). To
achieve this, i has to bid b′i such that bj+1 ≤ b′i ≤ bj . Thus, bidder j currently in bj moves
up to slot j − 1 and bidder i’s price for slot j is bj+1.
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The utility i gets from this deviation is u′i = vi(αj − bj+1). Thus, for a Nash equilibrium
this deviation should not give better utility than truthful bidding:

αi(vi − bi+1) ≥ αj(vi − bj+1) for every lower slot j > i

The problem with Nash equilibrium in GSP is that there are many such bid profiles and some
of them are socially inefficient (bids are not value-ordered).

Example. Consider an example with three slots with α1 = 0.2, α2 = 0.18 and α3 = 0.1 and
four bidders with valuations: v1 = 4, v2 = 10, v3 = 2 and v4 = 1. The bid profile b1 = 4,
b2 = 2.1, b3 = 2 and b4 = 1 is a Nash equilibrium but does not maximize social welfare as
the slots are not assigned in value order.

5.2 Envy-free Outcome

To refine Nash equilibrium further for GSP, the authors look at the envy-free outcomes.

Definition 8. A bid profile b with b1 ≥ . . . ≥ bn is envy-freea if for every bidder i and slot
j ̸= i, we have

αi(vi − bi+1) ≥ αj(vi − bj+1). (16)

aWhy “envy free”? Setting pj = bj+1 for the current price-per-click of slot j, then these inequalities translate
to: “every bidder i is as happy getting her current slot at the current price as she would be getting any
other slot at that slot’s current price.

Lemma 3. Every envy-free bid profile is a Nash equilibrium.

Proof. The envy-free condition is the same as the Nash equilibrium condition if j > i. Now
suppose j < i. Since bids are sorted, we know that bj+1 ≤ bj , thus αj(vi−bj+1) ≥ αj(vi−bj).

Combining this with the envy-free condition gives us the inequality for a Nash equilibrium.
Thus, each envy-free bid profile is also a Nash equilibrium.

There are still many envy-free Nash equilibria. To understand which of these are most likely to
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be played, the authors consider the fact that bidders are likely to keep increasing their bids bi

(and thus the price of the bidder in slot i − 1). The possible downside of this appraoch is that
the bidder in slot i− 1 can retaliate and underbids such that that bidder i has to pay their own
bid as the price for slot i−1. This motivates the definition of locally-envy free Nash equilibrium,
which is the result of these best-response dynamics between bidders until they do not envy the
bidder immediately above or below.

Definition 9. A bid profile is locally envy-free if the envy-free condition (Definition 8)
holds for every pair of adjacent slots—for every i and j ∈ {i− 1, i+ 1}.

Lemma 4. In a GSP auction with strictly decreasing CTRs, a bid profile is locally envy-free
if and only if it is envy free.

Proof. We split this into three parts.

• Part 1. Bids are value ordered.

Consider the locally envy-free condition for bidders i and i+1 not envying slots i+1

and i respectively, we get:

αi(vi − bi+1) ≥ αi+1(vi − bi+2) (17)

αi+1(vi+1 − bi+2) ≥ αi(vi+1 − bi+2) (18)

(19)

Isolating αi+1bi+2 in Inequality 18, we get

αi+1bi+2 ≤ αi+1vi+1 − αivi+1 + αibi+2

Substituting this on the RHS of Inequality 17 we get:

αi(vi − bi+1) ≥ αi+1(vi − bi+2) (20)

≥ αi+1vi − (αi+1vi+1 − αivi+1 + αibi+2) (21)

vi(αi − αi+1) ≥ vi+1(αi − αi+1) + αi(bi+1 − bi+2) (22)

(23)
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Since we know that bi+1 ≥ bi+2, we can simplify to:

(vi − vi+1)(αi − αi+1) ≥ 0

Since αi ≥ αi+1 for all i, it must be that vi ≥ vi+1 for all i as well. Thus, we get that the
bids are value ordered at a locally-envy free profile.

Part 2. Downward deviations are envy-free. To argue that downward deviations are envy
free, we show that bidder 1 in slot 1 does not have any incentive to deviate to any slot j > 2.
The same argument generalizes to all bidders.

Using locally envy free condition on bidder 1 and 2 that says they do not envy slots 2 and
3 respectively, we get:

α1(v1 − b2) ≥ α2(v1 − b3) (24)

α2(v2 − b3) ≥ α3(v2 − b4) (25)

(26)

Isolating α2b3 in Inequality 25 above we get:

α2b3 ≤ α2v2 − α3v2 + α3b4

Substituting this in Inequality 24 we get:

α1(v1 − b2) ≥ α2v1 − (α2v2 − α3v2 + α3b4)

α1(v1 − b2) ≥ α2(v1 − v2) + α3(v2 − b4)

≥ α3(v2 − b4) + α2(v1 − v2) + α3v1 − α3v1

≥ α3(v1 − b4) + α2(v1 − v2) + α3(v2 − v1)

≥ α3(v1 − b4) + (v1 − v2)(α2 − α3)

≥ α3(v1 − b4)

Thus, bidder 1 has no incentive to deviate to slot 3. The same argument can be extended
to show that bidder 1 has no incentive to deviate to any slot lower than 3 and that in fact
no bidder has any incentive to deviate to any non-adjacent lower slot.

Part 3. Upwards deviations are envy-free. To argue that upward deviations are envy free,
we show that bidder 3 in slot 3 does not have any incentive to deviate up to slot 1. The
same argument generalizes to all upward slots and bidders.
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Using locally envy free condition on bidder 3 and 2 that says they do not envy slots 2 and
1 respectively, we get:

α3(v3 − b4) ≥ α2(v3 − b3) (27)

α2(v2 − b3) ≥ α1(v2 − b2) (28)

(29)

Isolating α2b3 in Inequality 28 above we get:

α2b3 ≤ α2v2 − α1v2 + α1b2

Substituting this in Inequality 27 we get:

α3(v3 − b4) ≥ α2v3 − (α2v2 − α1v2 + α1b2)

≥ α2v3 + v2(α1 − α2)− α1b2

≥ α1v3 − α1v3 + α2v3 + v2(α1 − α2)− α1b2

≥ α1(v3 − b2)− v3(α1 − α2) + v2(α1 − α2)

≥ α1(v3 − b2) + (v2 − v3)(α1 − α2)

≥ α1(v3 − b2)

Thus, bidder 3 does not envy slot 1. The same argument generalizes to all bidders not
envying any upward non-adjacent slot.

5.3 Equivalence of GSP and VCG

Finally, to show that the best-response dynamics in a GSP auction converge to a VCG outcome,
we refine the locally-envy free condition further to define a unique bid profile of the agents.

Definition 10. (Balanced bidding) Let the bids b1, . . . , bn of the bidders satisfy the balanced
bidding condition if and only if for each bidder i:

αi(vi − bi+1) = αi−1(vi − bi)

Notice that the balanced bidding condition defines a unique bid profile (up to the indifference
of the top bidder). We can now show that at this bid profile, the outcome of the GSP auction is
the same as the truthful VCG auction.
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Theorem 6. The outcome of the GSP auction in a locally envy-free Nash equilibrium bid
profile that satisfies balanced bidding is equal to the truthful outcome of the VCG auction.

Proof. As the bids in a locally envy-free outcome are value ordered, the winners are the
same in both GSP and VCG auction.

We now show that the payment of bidder i in slot i is the same in both auctions using
induction. As the base case, condition the last slot i = k, then pk[GSP] = pk[VCG] =

αkbk+1.

Consider a slot j < k, then the payment pj [GSP] = αibi+1. Applying the balanced bidding
condition on bidder i+ 1, we get

αi+1(vi+1 − bi+2) = αi(vi+1 − bi+1) (30)

αibi+1 = (αi − αi+1)vi+1 + αi+1bi+2 (31)

pi[GSP] = (αi − αi+1)vi+1 + pi+1[GSP] (32)

= (αi − αi+1)vi+1 + pi+1[VCG] = pi[VCG] (33)

As the final step in the analysis of GSP vs VCG, we can compare their revenue as follows.

Lemma 5. Balanced bidding equilibrium is the lowest-revenue among locally envy-free bid
profiles of the GSP auction. Thus, all the locally envy-free bid profiles have revenue at least
as much as the truthful VCG outcome.

Proof. The proof follows a similar induction as in Theorem 6 and is omitted.
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