## CS 357: Algorithmic Game Theory

Assignment 4 (due 04/25/2025)

Instructor: Shikha Singh

**LATEX Template (Source):** https://www.overleaf.com/read/qtzccrsxxxxx#690906

**Instructions.** This is a **partner assignment**. You must use the  $IAT_EX$  solution template provided to write your answers and submit a joint PDF with your partner on Gradescope. Points will be awarded for *clarity, correctness and completeness* of the answers. Assignments are different from homeworks and **formal proofs** are expected for each question. This assignment is due Friday (04/25) at noon on Gradescope.

**Problem 1.** In this question, we consider a voting rule, *Schulze rule* that is a bit complicated to state, but satisfies most of the desirable criteria among preferential voting systems, e.g. Condorcet, Independence of clones, polynomial-time computability, etc.

A weighted-majority graph is defined as follows: the candidates are the nodes, and there is a directed edge from a to b with weight  $w_{ab} = (no. of voters who prefer <math>a$  to b) - (no. of voters who prefer <math>b to a).

The strength of a path is defined as the weight of the **least-weight** edge on it. Let S(x, y) be the maximum strength among all paths from x to y.

A candidate *a* chain beats a candidate *b* if S(a,b) > S(b,a). The Schulze winner is a candidate that chain beats all others (such a winner is surprisingly guaranteed to exist).<sup>1</sup>

Consider an input with three candidates  $\{a, b, c\}$ , and sixty voters with the following breakdown of ranked orders (on the left), and the corresponding weighted-majority graph (on the right):



- (a) Determine the Schulze winner in the above example by computing the S(x, y) values.
- (b) Prove that the Schulze rule is Condorcet consistent.

<sup>&</sup>lt;sup>1</sup>Ties can be broken in a consistent way.

**Problem 2.** Consider the greedy strategy to solve the f-manipulation problem, when the social-choice rule f is the Borda rule:

Fix the ranked lists  $L_{-i}$  of all other voters. Compute the Borda score  $s_j$  of each alternative j under preference lists  $L_{-i}$ . Construct the misreport  $L'_i$  as follows: place i's favorite candidate a in the top position and rank the other alternatives in ascending order of their Borda scores  $s_j$  (that is highest-score candidate goes last).

We say the greedy algorithm is successful if it causes a to win whenever it is possible, given  $L_{-i}$ . Prove that the greedy algorithm successfully solves the f-manipulation for Borda rule. (*Hint.* Consider a list  $L_i^*$  such that a wins. Show that  $L_i^*$  can be transformed to  $L_i'$ through a series of swaps, such that a continues to win. This should is similar to how we prove greedy is optimal through exchange argument in CS256.)

**Problem 3.** In this problem, we look more closely at the two fairness criterion for fair division of divisible goods: envy-freeness and proportionality.

- (a) Consider the cake cutting model from lecture. Formally prove the lemma discussed in class that the envy-free allocations are always proportional, for any number of players.
- (b) Next, we show that the other direction is not true when there are three or more players.

Consider the moving-knife (Dubins Spanier) algorithm for dividing a unit-interval cake [0, 1] proportionally between n players: a referee slowly moves a knife right from the start position 0. At any point if the knife is at a position  $c_i \in [0, 1]$  in the cake such that  $v_i([0, c_i]) = 1/n$ , player i raises their hand and are given the slice  $[0, c_i]$  of cake.<sup>2</sup> Then, the protocol continues between the remaining n - 1 players.

Recall that in lecture, we argued that this protocol creates a proportional division for any *n* players: that is, each player receives  $\geq 1/n$ th of the entire cake according to their own valuation, where  $v_i([0, 1]) = 1$  for each player *i*. Show through an explicit example that even for n = 3 players, this protocol is not envy-free.

**Problem 4.** Consider a single-item market with  $n \ge 2$  buyers. Each buyer *i* has a valuation  $v_i$  for the item. Add n-1 dummy items that all buyers value at 0. State and prove necessary and sufficient conditions on a market-clearing price vector  $\mathbf{p} = (p_1, \ldots, p_n)$  of such a market (based on the valuations of the bidders).

**Problem 5.** Consider a matching market with *n* buyers and *n* items where each buyer only wants a single item. Let  $M^*$  be a maximum-weight matching in the graph, that is, a matching that maximizes the welfare:  $\sum_{i=1}^{n} v_{iM^*(i)} \geq \sum_{i=1}^{n} v_{iM(i)}$  for any matching *M*. Let  $\mathbf{p} = (p_1, \ldots, p_n)$  be any market clearing price of this market.

Prove that  $(M^*, p)$  is a competitive equilibrium of this market. Recall that  $(M, \mathbf{p})$  is competitive-equilibrium iff  $\mathbf{p}$  is a market-clearing price vector and M is a matching in the preferred-item graph defined by  $\mathbf{p}$ . Thus, to prove this statement, you must show that  $M^* \subseteq E_p$ , where  $E_p$  are the edges in the preferred-item graph under  $\mathbf{p}$ .

<sup>&</sup>lt;sup>2</sup>Ties are broken according to a predetermined tie-breaking rule