
CS 357: Algorithmic Game Theory Spring 2025

Assignment 3 (due 04/11/2025)

Instructor: Shikha Singh

LATEX Template (Source): https://www.overleaf.com/read/wprzjfbgxxft#6f2d2b

Instructions. This is a partner assignment. You must use the LATEX solution template
provided to write your answers and submit a joint PDF with your partner on Gradescope.
Points will be awarded for clarity, correctness and completeness of the answers. Assignments
are different from homeworks and formal proofs are expected for each question. This
assignment is due Friday (04/11) at noon on Gradescope.

Stable Matching with Partial Preferences

Consider a stable matching market with n candidates and n jobs. In class, we assumed that
each candidate provides a complete ranking of the n jobs and each job provides a complete
ranking of n candidates. In reality, this is often infeasible or impractical. For example, the
National Residency Matching program (NRMP) asks doctors to submit a ranked list of their
top 20 hospitals.1

Consider the stable matching problem where agents can submit incomplete preference
lists. To define stability in this setting, it is assumed that a candidate c prefers to be
unmatched than be matched to a job j they did not include in their list, and similarly a job
j prefers to be unmatched than be matched to a candidate c they did not include in their
list. When incomplete lists are allowed, then some agents may now be left unmatched in a
stable matching.

Fortunately, the Gale Shapley deferred acceptance algorithm naturally extends to partial
preferences. If each candidate has d jobs on their preference list where d < n, then in
a candidate-proposing deferred acceptance algorithm, if a candidate is rejected by all d
jobs on their list then they remain unmatched. The extended procedure is summarized in
Algorithm 1. Notice that the CPDA algorithm terminates when all candidates are either
matched or have exhausted their preference list. Moreover, all candidates in R at the end
of Algorithm 1 remain unmatched.

We proved in class that the CPDA algorithm outputs the best-possible matching for each
candidate. In particular, let Jc denote the set of all stable partners of a candidate c on an
instance I of stable matching. Recall that best(c) denotes the job that is most preferred by c
among Jc. We proved in class that the CPDA algorithm matches each candidate c to best(c).
This property continues to hold in the extended procedure when there are incomplete lists.

1Candidates submit 20 ranks for free; each additional rank costs $30 up to a maximum of 300 [2].

1

https://www.overleaf.com/read/wprzjfbgxxft#6f2d2b

Assignment 3 2

Algorithm 1: Candidate Proposing Deferred-Acceptance (CPDA) Algorithm

Fix an ordering over C; Initialize U ← C and R ← ∅ and µ(j)← ∅ for all j ∈ J
while U \ R ≠ ∅ do

Pick a candidate c ∈ U with the lowest index
if c /∈ R then

Let j be the most preferred job on c’s list that c has not yet proposed to
if j is the last job on c’s list then

add c to R
end
c proposes to j; Let c′ = µ(j)
if j prefers c to c′ then

j rejects c′

if c′ ̸= ∅ then
add c′ to U

end
j accepts c;
Set µ(j) = c and remove c from U

end

end

end

Lone Wolf Theorem. When incomplete preferences are allowed, stable matchings admit a
somewhat surprising property which is referred to as the Lone Wolf Theorem in the literature.

This property says that the set of matched agents are the same in any stable matching.
That is, no matter what algorithm to used to generate the matching, the people who are
unmatched in one are unmatched in all and those who are matched in one are matched in
all of them. The question below asks you to formally prove this property.

Problem 1. Let I be an instance of the stable matching problem with incomplete preference
list and µ be some stable matching of I. Prove that if a candidate c is unmatched in µ, then
c must be unmatched in every stable matching of I. (Hint. Consider the stable matching µ∗

output by the candidate-proposing DA algorithm. Compare the matched pairs in µ and µ∗.)

Strategyproofness of CDPA. The lone-wolf theorem is useful in proving that the CPDA
algorithm is dominant-strategyproof for the candidates.

Problem 2. Prove that the candidate-proposing deferred acceptance algorithm is dominant-
strategyproof for the candidates. That is, no candidate can achieve a better match by
misreporting their preferences.

An outline of the proof is provided to guide your reasoning. We prove the theorem by
contradiction.

Suppose that the CPDA algorithm is not dominant-strataegyproof for the candidates.
Then, there exists at least one candidate c that can benefit from misreporting, keeping the
preferences of all others fixed. More formally, consider an instance I and a candidate c with
a true preference Pc and another instance I(1) which is identical to I except c’s preference list

Assignment 3 3

P ′
c ̸= Pc. Let µ and µ′ be the matching output by CPDA on instances I and I(1) respectively.

Suppose c prefers their match j′ = µ′(c) to their match j = µ(c).

(a) Consider a new instance I(2) which is identical to I except c’s preference list now only
consists of a single job j′. Show that the matching µ′ output when CPDA is run on
I(1) continues to be a stable matching with respect to the instance I(2).

(b) Consider a new instance I(3) which is identical to I except c’s truthful preference list
Pc is truncated at job j′. That is, all jobs below j′ are removed from c’s list. Show
that the matching µ′′ output when CPDA algorithm on I(3) must leave c unmatched.

(c) Show that the matching µ′′ output when CPDA algorithm on I(3) is also stable with
respect to the instance I(2).

(d) Finally, use the lone-wolf theorem on one of these instances to arrive at a contradiction.

Stategyproof and Stability.

Problem 3. In this question, we will show that no algorithm for two-sided matchings can
be both stable and strategyproof (for both sides of the market). To simplify, we allow
incomplete preferences as in the previous questions, that is, candidates (jobs) can declare
other jobs (candidates) as unacceptable by leaving them off their preference list.

Using this model, prove that for a stable matching instance with two candidates and two
jobs, that does not exist an algorithm that is both stable and strategyproof for both students
and jobs.

(Hint. Suppose such an algorithm exists and consider an instance where in a truthful
ordering s1 prefers h1 over h2, s2 prefers h2 over h1, h1 prefers s2 over s1 and h2 prefers s1
over s2. Show that any algorithm that outputs a stable matching on such a instance fails to
be dominant-strategyproof. The only assumption you can make is that the algorithm always
output a stable matching.)

Popular Matchings. When candidates and jobs have incomplete preferences, requiring
stability causes some candidates/jobs will be unmatched. Moreover, such unmatched agents
are unlucky as they are unmatched in all stable matchings. Let the size of a matching be
the number of matched candidates. It is known that requiring stability can lead to a size of
a matching that is much smaller than the largest cardinality bipartite matching. With the
goal of matching more agents, researchers [1] have looked at relaxing the requirement with
the goal of finding larger matchings.

Consider a bipartite graph G = (V,E) where V = C∪J where C is the set of n candidates
and J is a set of n jobs. An edge e = (c, j) ∈ E if candidate c appears in j’s preference
list and j appears in c’s preference list. Moreover, each vertex has a strict ranking over its
neighbors.

A matching N ⊆ E such that no two vertices in N share an edge. We say a candidate c
prefers a matching N1 to a matching N2 if (a) c is matched in N1 and unmatched in N2, or
(c) c is matched in both but prefers their match in N1 to their match in N2. A matching N1

is more popular than N2 if the number of vertices (candidates and jobs) that prefer N1 to

Assignment 3 4

N2 exceeds the number of vertices that prefer N2 to N1. A matching M is popular if and
only if there is no matching M ′ that is more popular than M . In the next problem, show
that popularity is a relaxation of stability, that is, each stable matching is popular but there
exist popular matchings that are not stable.

Problem 4. (a) Prove that every stable matching is popular.

(b) Give an example of a matching that is popular but is not stable.

References

[1] David J Abraham, Robert W Irving, Telikepalli Kavitha, and Kurt Mehlhorn. Popular
matchings. SIAM Journal on Computing, 37(4):1030–1045, 2007.

[2] NRMP. How many programs can I rank? — nrmp.org. https://www.nrmp.org/help/
item/how-many-programs-can-i-rank/#, 2024. [Accessed 09-02-2025].

https://www.nrmp.org/help/item/how-many-programs-can-i-rank/#
https://www.nrmp.org/help/item/how-many-programs-can-i-rank/#

