
CS 357: Algorithmic Game Theory Spring 2025

Assignment 2 (due 03/07/2025 )

Instructor: Shikha Singh

LATEX Template (Source): https://www.overleaf.com/read/ytncckzkjpyb#b48aad

Instructions. This is a partner assignment. You must use the LATEX solution template
provided to write your answers and submit a joint PDF with your partner on Gradescope.
Points will be awarded for clarity, correctness and completeness of the answers. Assignments
are different from homeworks and formal proofs as the justification is expected for each
question. This assignment is due Friday (02/21) at noon on Gradescope.

Sequential Auctions

Many traditional auction-houses, as well as eBay, run multi-round auctions that allow bidders
to respond to bids placed by others. Such auctions provide bidders with new kinds of
strategically relevant information—they may be able to observe the bids of others and use
it to revise their own.

Two common formats are: (a) ascending clock auctions (also known as English auctions),
where the ask price increases in fixed increments over time, and (b) descending clock auctions
(also known as Dutch auctions), where the ask price decreases in fixed increments.

Ascending-clock auction. Consider the following ascending-clock auction: the ask
price starts low and increases continuously. Each bidder can drop out at any price and the
auction closes when only one bidder remains. The bidder wins, and pays the ask price at
which the last competitor dropped out.

This auction seems very similar to the sealed-bid second-price (SBSP) auction. However,
how the ascending-clock auction is implemented—in particular, what information is visible
to other bidders is crucial in formally comparing them. Recall that in a SBSP auction player
values are their private information, and thus each player’s strategy si is a function that
only depends on their value vi and maps it to an action (a bid bi). On the other hand, in a
sequential auction, their strategy can map any information available to them to their action.

We say that two auctions are strategically equivalent if, for any strategy profile in
one auction, there exists a strategy profile in the other auction such that the outcomes
(allocations and payments) are the same, for all value profiles (and vice versa). At a high
level, strategic equivalence means that bidders participating in the two auctions have the
same “expressive power” in terms of the strategies they can follow and its outcome (regardless
of whether these strategies are reasonable or not).

Problem 1. Below, we compare the multi-round auctions to second-price auctions from the
point of view of how bidders should participate in them.
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(a) First, consider the ascending-clock auction where bidders can drop out privately (un-
observed by other bidders). Show that the SPSB auction is strategically equivalent to
the ascending-clock auction described above. (You need to prove both directions here.)

Solution.

(b) Now consider an ascending-clock auction where a bidder can observe the drop-out
points of other bidders (e.g., each bidder who is still in the game has their hand
raised). Is the public-drop-out variant of the ascending-clock auction also strategically
equivalent to a SBSP auction?

To help answer this, we will establish a property about winner determination in
SBSP auctions. Fix a strategy profile s of the bidders. Let v1 = (vi, v−i) and v2 =
(v′i, v−i) be two valuation profiles that only differ in bidder i’s value (vi ̸= v′i).

1

Let w1 be the winner of SBSP when bidders bid under v1 and w2 when bidders bid
under v2 (using the same strategy profile s). Show that in a SBSP auction, a change
in a bidders value can only affect their own allocation. In particular, show that either
the winner is unaffected: w1 = w2 or i is be the winner in one of them: w1 = i or
w2 = i.

Solution.

(c) Using part (b), show that the ascending-clock auction where a bidder can observe
the bids of others is not strategically equivalent to a SBSP auction. (Hint. Give
a strategy profile for which the allocation cannot be achieved in any strategy in the
SPSB auction.)

Solution.

1As strategies map values to bids, this also changes bidder i’s bids: bi = si(vi) and b′i = si(v
′
i).
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Welfare Maximization and Externality Pricing

Problem 2. (Nisan, Roughgarden and Tardos)

(a) Consider an arbitrary single-parameter environment, with feasible allocation X =
(x1, x2, . . . , xn) ∈ Rn. Given bids b = (b1, . . . , bn), the welfare-maximizing allocation
rule is x(b) = argmax(x1,...,xn)∈X

∑n
i=1 bixi. Prove that this allocation rule is mono-

tone.2 (Hint. Consider a player i, and fix b−i. Increase i’s bid from bi to b′i, where
b′i = bi + δ and δ > 0, and show that i’s allocation cannot get worse.)

Solution.

(b) Continuing part (a), we consider a welfare maximizing allocation rule x(b) and now
restrict to feasible allocations X that contain only 0-1 vectors—that is, each bidder
either wins or loses.

In this case, Myerson’s payment rule can be written as:

p(bi,b−i) =

{
0 if xi(bi,b−i) = 0
b∗i (b−i) if xi(bi,b−i) = 1

where b∗i (b−i) is the bidder i’s critical bid, that is, the lowest bid at which i gets a
non-zero allocation.

Given feasible allocations containing 0-1 vectors, we can identify each feasible allocation
with a “winning set” of bidders (the set of bidders i with xi = 1 in that allocation).

Prove that, when S∗ is the set of winning bidders and i ∈ S∗, then i’s critical bid b∗i (bi)
equals the difference between

(i) the maximum welfare of a feasible allocation that excludes i3—that is, the maxi-
mum welfare that can be generated if i was not present

(ii) the welfare
∑

j∈S∗\{i} bj generated by the winners (other than i) in the chosen

outcome S∗—that is, the welfare that is generated (by others) given i wins

Hint. Write down the welfare-maximizing allocation for the two cases when (a) xi = 1
(i ∈ S∗) and (b) when xi = 0 (i /∈ S∗). The optimal allocation will choose whether
or not to allocate to i (that is, when to switch from (b) to (a)) at a bid bi where the
welfare generated by case (a) is at least as good as the welfare generated by case (b).

Remark. In other words, a winning bidder pays their “externality”—the welfare loss
they impose on others.

Solution.

2Assume that ties are broken in a deterministic and consistent way, such as lexicographically.
3You should assume that there is at least one such feasible allocation.
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Approximation Algorithms for NP Hard Auctions

Problem 3. (Roughgarden) Knapsack auctions are another widely applicable example of
single-parameter mechanisms.

In a knapsack auction, each bidder i has a publicly known size wi and a private valu-
ation vi. The seller has a capacity W . A feasible allocation X is defined as the 0-1 vectors
(x1, . . . , xn) such that

∑n
i=1wi · xi ≤ W . (As usual, xi = 1 indicates that i is a winning bid-

der.) The goal is to design allocation and payment rules as to (a) maximize welfare
∑n

i=1 xivi
subject to the capacity constraints, and (b) elicit truthful bids (dominant strategyproof).

Knapsack auctions come up whenever there is a shared resource with limited capacity. For
example, each bidder’s size could represent the duration of an advertisement, the valuation
their willingness-to-pay for its ad being shown during the Super Bowl, and the seller capacity
the length of a commercial break.

Unfortunately, problem of finding an allocation that maximizes welfare (the well-known
Knapsack problem) is NP-hard. Thus, we resort to approximation algorithms.

Consider the following greedy approximation algorithm from lecture:

• Sort and relabel bidders such that:

b1
w1

≥ b2
w2

≥ . . . ≥ bn
wn

• In the above order, greedily try to fit as many bidders in the Knapsack as possible—let
Q be the set of jobs that are chosen in this way. Let S =

∑
i∈Q bi denote the welfare

generated by these bidders, assuming truthful bids.

• Let imax be the single job with the highest bid bmax. If bmax > S, then allocate only to
imax. Otherwise, allocate to bidders in Q.

(a) Assuming truthful bidding, show that this greedy algorithm is a 2-approximation: that
is, if OPT is the maximum welfare possible by any feasible allocation, then this greedy
algorithm generates welfare that is at least 1/2 · OPT. (Hint. Consider a Knapack
with a larger capacity W ′ ≥ W , then OPT(W ′) ≥ OPT(W ). Use this and show that
S + bmax ≥ OPT.)

Solution.

(b) We would like to use the 2-approximation algorithm to design a dominant strategyproof
mechanism. Myerson’s lemma tells us that a allocation can be made dominant strat-
egyproof iff it is monotone. Argue that the above greedy 2-approximation scheme is
monotone.

Solution.
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Problem 4. Consider a set of M distinct items and n bidders. Each bidder i wants a
publicly known subset Si ⊆ M of items and has a private value vi for obtaining it. If
bidder i is given a subset Ti at a total price p, her utility is vi−p if Si ⊆ Ti, and 0 otherwise:
that is, the bidders want all the items in their desired subset or nothing at all. Each item
can only be awarded to one bidder. Thus, a subset B of bidders can all receive their desired
subsets Si simultaneously if and only if Si ∩ Sj = ∅ for each distinct i, j ∈ B.4

Turns out that the problem of computing a welfare-maximizing feasible allocation is
NP-hard.5 Consider the following greedy heuristic for this problem:

GreedyAllocation((b1, . . . , bn), (S1, . . . , Sn)):

Initialize W = ∅ and X = M
Sort and relabel the bidders such that b1 ≥ b2 ≥ . . . bn
for i = 1, 2 . . . , n do

if i’s subset is still available, that is, Si ⊆ X then
remove Si from X and add i to W

return the winning bidders W

(a) Does this algorithm define a monotone allocation rule? Just state yes or no and
convince yourself that if you had to provide a proof, you could. There are already two
monotonicity proofs in this assignment so we will skip a formal proof here.

(b) Assuming truthful bidding, does the greedy allocation algorithm maximize the social
welfare? Prove it or give an explicit counterexample.

(c) Using Myerson’s lemma, give an expression for the payment that a winning bidder
i ∈ W should be charged, in terms of the subsets Sj and bids bj of the bidders.

Solution.

4This is a single-parameter setting with 0/1 allocations as a bidder either wins her desired subset or not.
5A reduction from a known NP hard problem such as maximum independent set works to show this.
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Citation Sources

Using question-specific prompts on the Internet is a violation of the honor code. If you
referred to lecture notes or other resources on the topic and you find that information helpful
towards these questions, you must cite them here.


