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ABSTRACT
We study vindictive bidding, a strategic bidding behavior
in keyword auctions where a bidder forces his competitor
to pay more without affecting his own payment. We show
that most Nash equilibria (NE) are vulnerable to vindictive
bidding and are thus unstable. Pure strategy Nash equilibria
(PSNE) may not exist when there are at least three players
who are all vindictive with each other. And there always
exists a PSNE if there is only one pair of vindictive players.
Given the set of vindictive bidding pairs, we show how to
compute a pure strategy Nash equilibrium (if one exists). As
an ongoing work, we also propose several interesting open
problems related to vindictive bidding.

1. INTRODUCTION
The sponsored search keyword auction is one of the most

important economic mechanisms used on the Internet since
it effectively monetizes search activities for internet compa-
nies like Yahoo! and Google. Their effectiveness has helped
make the web a remarkably efficient advertising medium,
and the associated economic benefits have stimulated inno-
vation in search as well as further investment in the Internet
at large by companies who benefit from the increased effi-
ciencies.

As sponsored search auctions continue to mature and be-
come even more mainstream and competitive, there has been
much interest in the research community on keyword bidding
strategies and basic mechanism design questions. Most of
this work, e.g. [6, 10, 3, 9], has emphasized the aspect of
the keyword auctions that differentiates them from the most
frequent types of auctions studied previously. This aspect
is their positional nature, in which bidders are not simply
competitively bidding on one object, but on the position of
their advertisement on the search result page.

Most of the previous work has focused on the scenario
where bidding agents are completely self-interested in the
sense of most classical auction theory, i.e., they maximize
their own utility without considering the utility of other
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agents. In keyword auctions, a keyword normally corre-
sponds to a specific product or service. When a specific
product or service is considered, usually there may be a
handful of top players who control the majority of the mar-
ket share. In such competitive markets, it can often be in a
business’s interest to try to squeeze other players out of the
market, thus reducing market competition. In starkly com-
petitive markets, companies have to take into consideration
their competitors. For the corresponding keyword auction,
it is even more evident. Normally each bidder in a specific
keyword auction market has a budget (either daily budget,
monthly, quarterly or annual budget). There are a few big
players, and if a bidder can drive one player out of the mar-
ket, then that bidder can benefit from reduced competition
to lower their advertising costs and increase their profit.

In this paper we study vindictive bidding, a strategic bid-
ding behavior in keyword auctions, where a bidder forces his
competitor to pay more without affecting his own payment.
This is perfectly legal in current keyword auction systems,
and we show some empirical evidence that supports the fact
that it happens quite frequently. However, vindictive bid-
ding creates quite a few complicated issues. If there are
too many vindictive players involved, then the market may
become unstable: it may be that no pure strategy Nash
equilibria exist. By explicitly adding the vindictive com-
ponent to bidder behavior, we show that the huge space
of pure strategy Nash equilibria considered in prior work is
reduced or sometimes eliminated. So there is a tradeoff be-
tween vindictiveness and stability. And it is an intriguing
decision whether a bidder should be either vindictive to or
cooperative with another bidder.

Our results and the empirical evidence also suggest that
many keyword markets may not be in competitive equilib-
rium, and there is more learning to be done on the part of
market participants. The empirical evidence also suggests
some clear opportunities for benefit from mixed strategies.
Although we do not currently have time-course bidding data,
our analysis suggests there may be additional interesting un-
observed (by us) dynamics going on.

1.1 Organization
The rest of the paper is organized as follows. In Section 2,

we discuss related work. In Section 3, we show that tradi-
tional Nash equilibria become no longer stable with vindic-
tive bidders, and give an example of bidding dynamics with
two vindictive players. We also show statistically that vin-
dictive bidding pairs (two consecutive bids with price dif-
ference 1 cent) is very common in practice. In Section 4,
we show that most Nash equilibria (NE) are vulnerable to



vindictive bidding and thus unstable. Pure strategy Nash
equilibria (PSNE) may not exist when there are at least
three players who are all vindictive with each other. And
there always exists a PSNE if there is only one pair of vin-
dictive players. In Section 5, we show how to compute pure
strategy Nash equilibria given a set of vindictive bidding
pairs, and also show that efficient algorithms for computing
pure strategy Nash equilibria exist for the special case of
Symmetric Nash equilibria. We propose several interesting
open problems in Section 6 and conclude in Section 7.

2. RELATED WORK
A number of recent papers have analyzed keyword auc-

tions. Edelman et al.[6] gave a nice description of the evolu-
tion of sponsored search auctions. Varian [10] and Edelman
et al. [6] analyzed the one round keyword auction deployed
by Yahoo! and showed that it is not incentive compatible,
and also characterized a subclass of Nash equilibria, termed
symmetric Nash equilibrium by Varian and locally envy-free
equilibria by Edelman et al. Their work is extended by Ag-
garwal, Goel and Motwani [3] and Lahaie [9], who analyzed
a rank by weighted bid winner selection scheme. This in-
cludes both the rank-by-bid scheme currently deployed by
Yahoo! and rank-by-revenue scheme currently deployed by
Google.

In terms of bidding strategies for keyword auctions, Edel-
man and Ostrovsky [5] discussed the “sawtooth” bidding
patterns observed from Overture bidding data, when the
Overture mechanism was a first-price auction. They argued
that this kind of bidding pattern was caused by the “win-
ner’s curse” of first price auctions. Later both Yahoo! and
Google switched to variants of second price auctions. Thus
this kind of bidding patterns is no longer relevant. Several
companies market bid management software for pay-per-
click auctions, such as Efficient Frontier, Performics, Silicon
Space, GoToast, etc. GoToast offers rule-based systems in
which you can set minimum prices, maximum prices, de-
sired positions, and so on. Among many rules provided by
GoToast [1], Gap Jammer is one rule corresponding to vin-
dictive bidding. Kitts and LeBlanc [8] presented a trading
agent for keyword auctions which explores various bidding
strategies to optimize the advertising effectiveness crossing
multiple keyword auction markets.

The other work most relevant to us is the spiteful bidding
work by Brandt, Sandholm and Shoham [4]. They studied
the problem where a bidder is interested in not only maxi-
mizing its own profit, but also minimizing its competitors’
profits. In contrast to the keyword position auctions, they
consider a traditional auction where only one single object is
auctioned and the payoff of player i equals to ui −αi

P
j
uj

where αi ∈ [0, 1] is a constant describing how spiteful the
i-th player is. For us, vindictive bidding is spiteful, but it is
only weakly so. In our model, we assume weak vindictive-
ness in which each player behaves vindictively only when it
is not affecting its own payment, at least for just a single
round. I.e., in our case the αi = 0, but a bidder still prefers
a competitor to pay more, other things being equal.

3. BIDDING DYNAMICS AND VINDICTIVE
BIDDING PAIRS

Throughout the paper, we consider a single keyword auc-
tion where there are n bidders, k positions and bids are

ranked in strictly decreasing order: b1 > b2 > . . . > bn.
Assume that n > k and the reservation price is 0. 1 Let cj

denote the clickthrough rate for ads displayed on the j-th
position, for j = 1, . . . , k. 2 Assume that we use the gener-
alized second price auction where the i-th bidder wins the
i-th position and pays bi+1, for i = 1, 2, . . . , k. Bidder i has
its own private and independent valuation per click (VPC)
vi, for i = 1, . . . , n. Bidders are rational players, and the
payoff of bidder i is

Ui = ci(vi − bi+1), 1 ≤ i ≤ k.

With vindictive bidders, traditional Nash equilibria be-
come unstable as the vindictive bidder has the incentive to
increase its bid to undermine the one immediately above it.
In turn, for the player being hurt, his best response is no
longer staying in his original position, but narrowly under-
cut the vindictive bidder. This leads to multiple rounds of
undercut alternatively by these two vindictive players, and
eventually they reach a price level when the one on top has
no incentive to undercut the other player and they reach an
equilibrium.

An example best illustrates this bidding dynamics. Sup-
pose that there are two bidders with v1 = $1.0, v2 = $0.5,
c1 = 1, c2 = 0.5, and b1 = $1.0, b2 = $0.5, b3 = $0.1. This
is a PSNE if bidders are self-interested since both bidders
have no incentive to change their positions. However, if the
bidders are vindictive to each other, this is no longer sta-
ble. Bidder 2 has an incentive to raise his bid to $0.99, thus
forcing bidder 1 to pay $0.99 per-user-click and the utility of
bidder 1 drops from $0.5 to $0.01. Bidder 1 has an incentive
to undercut bidder 2 by bidding $0.98. Bidder 2 suffers after-
wards and will undercut bidder 1 again. These two players
alternatively undercut each other and eventually they reach
the state b1 = $0.56, b2 = $0.55, where they stabilize and
have no incentive to undercut each other anymore. Figure 1
shows the bidding dynamics for this example.
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Figure 1: An example of bidding dynamics with two
vindictive bidders.

1The reservation price is typically a nonzero constant, such
as $0.10 in Yahoo!Marketplace. However the nonzero case
can be easily reduced to the zero case.
2For simplicity, here we assume implicitly that the click-
through rate is only dependent on the position.



Given two bidders taking positions i and i + 1 in a key-
word auction, if bi+1 = bi −0.01, we call the pair (bi, bi+1) a
vindictive bidding pair. Vindictive bidding pairs do seem to
exist in real auctions. If vindictiveness were not a real issue,
we would not expect to see many bidding pairs that differ
by 0.01. To explore this issue, we gathered bidding data
on a group of 55 keywords related to the keyword “inkjet”.
This group represents a very competitive market with sev-
eral strong competitors and, and the average second price
over the 55 terms is $1.67. In Figure 2, we show a his-
togram of the bid differences among the top 7 bids over all
55 keywords. The data is from Overture’s publicly available
tool [2]. As can be seen, a bid difference of $0.01 is very
prevalent. Bid differences of $0.00 (ties are broken by order
of arrival on Overture) and $0.01 account for approximately
40% of the pairs.

Figure 2: A histogram of bid differences (between
consecutive bidders up to the seventh bidder) over
a group of 55 keywords related to the keyword
“inkjet”. The final bin contains counts for differ-
ences > $0.5

4. PSNE WITH VINDICTIVE BIDDING
In this section we study the (non) existence of pure strat-

egy Nash equilibria with vindictive bidders. Consider a sce-
nario where there are two big players 1, 2 with their VPC
v1, v2 both larger than VPC of all other players. Both play-
ers have their daily (or monthly, hourly, etc.) budgets. If
one player runs out of money, it will leave the market and
the other player can enjoy the 1st position with payment b3

per click. So it has an incentive to hurt the other player by
forcing him to pay more. For player 2, it pays b3 to obtain
the 2nd position for any b2 ∈ [b1 − 0.01, b3 + 0.01]. Thus
vindictive bidding will entice him to raise his bid such that
b2 = b1 − 0.01.

Given two vindictive players with VPC v1, v2 with v1 >
b3 and v2 > b3. Assume that the set of bids b1 > b2 >
b3 > . . . > bn is a PSNE where b2 = b1 − 0.01. Let c1, c2

be clickthrough rates for the 1st and 2nd positions with
c2/c1 = c′2 ∈ (0, 1). By the definition of NE, player 1 could

not benefit by bidding b2 − 0.01, thus

U1 = c1(v1 − b2) ≥ c2(v1 − b3)

⇒ (1 − c′2)v1 + c′2b3 ≥ b2 = b1 − 0.01.

By the definition of NE, player 2 could not benefit by
bidding b1 + 0.01, i.e.,

U2 = c2(v2 − b3) ≥ c1(v2 − b1)

⇒ b1 ≥ (1 − c′2)v2 + c′2b3.

In summary,

0.01 + (1 − c′2)v1 + c′2b3 ≥ b1 ≥ (1 − c′2)v2 + c′2b3.

Because 0.01 + (1 − c′2)(v1 − v2) ≥ 0, thus v1 ≥ v2. So that
all PSNE solutions can be described as

b1 ∈ [(1−c′2)v2+c′2b3, (1−c′2)v1+c′2b3+0.01], b2 = b1−0.01.

The same analysis also applies to the case when the i-th
bidder and the (i+1)-th bidder are vindictive to each other.
We summarize the results into the following theorem:

Theorem 1. In a keyword auction Nash equilibrium, if
the i-th bidder and the (i+1)-th bidder are vindictive to each
other, then bi = bi+1 + 0.01. Furthermore, their valuations
per click satisfy vi ≥ vi+1, i.e., the assignment of bidders to
positions are efficient if they are mutually vindictive to each
other.

4.1 (Non) Existence of PSNE with 3 Players
Suppose there are 3 players with bids b1 > b2 > b3 and

there VPC v1, v2, v3 are larger than the 4th highest bid b4.
For NE, b2 = b1 − 0.01, and b3 = b2 − 0.01 since these three
players are vindictive to each other. By the definition of NE,
player 2 will not benefit by bidding b1 + 0.01 or b3 − 0.01,
thus

c2(v2 − b3) ≥ c1(v2 − b1), (1)

c2(v2 − b3) ≥ c3(v2 − b4). (2)

Let c′2 = c2/c1, c
′

3 = c3/c1, then 0 < c′3 ≤ c′2 < 1. Eq. (1)
implies that

(1 − c′2)v2 + c′2b3 ≤ b1 = b3 + 0.02

⇒ b3 ≥ v2 −
0.02

1 − c′2
.

Eq.(2) implies that

b3 ≤ (1 −
c′3
c′2

)v2 +
c′3
c′2

b4.

By combining the above two inequalities we obtain

v2 −
0.02

1 − c′2
≤ (1 −

c′3
c′2

)v2 +
c′3
c′2

b4

⇒ v2 ≤ b4 +
c′2

c′3(1 − c′2)
0.02. (3)

Let v1 = v2 = v3 = v = 0.3, b4 = 0.1, c′2 = 0.8, c′3 = 0.5,
then Eq.(3) implies that 0.3 ≤ 0.1 + 0.16, a contradiction.
So that for this special case, there is no pure strategy NE.

Pure strategy Nash equilibria may exist if we choose pa-
rameters appropriately with three vindictive players. Given
three vindictive bidders with bids b1 = b2 + 0.01, b2 =
b3 + 0.01, NE is equivalent to

c1(v1 − b2) ≥ c3(v1 − b4) (4)

c3(v3 − b4) ≥ c1(v3 − b1) (5)



together with Eq.(1), (2).
Let b∗ = b3, then b1 = b∗ + 0.02, b2 = b∗ + 0.01. Eq.(4)

implies that

b∗ ≤ (1 − c′3)v1 + c′3b4 − 0.01.

Eq.(5) implies that

(1 − c′3)v3 + c′3b4 − 0.02 ≤ b∗.

So Nash equilibrium is equivalent to the following inequal-
ities:

max

�
(1 − c′3)v3 + c′3b4 − 0.02, v2 −

0.02

1 − c′2

�
≤ b∗

≤ min

�
(1 −

c′3
c′2

)v2 +
c′3
c′2

b4, (1 − c′3)v1 + c′3b4 − 0.01

�
. (6)

As an example, let v1 = v2 = v3 = v = 0.18, b4 = 0,
c′2 = 0.9, c′3 = 0.5, then NE inequalities (6) are equivalent
to b∗ ∈ [0.07, 0.08]. In other words, for the discrete version
where each bidding price is an integer factor of 1 cent, there
are two PSNE, with (b1, b2, b3) equals to (0.09, 0.08, 0.07)
and (0.10, 0.09, 0.08) respectively.

We summarize the results into the following theorem:

Theorem 2. If there is only one pair of vindictive bid-
ders, there always exists a pure strategy Nash equilibrium.
If there are three or more bidders who are vindictive to each
other, pure strategy Nash equilibria may or may not exist.

5. COMPUTING PSNE WITH VINDICTIVE
BIDDING

In this section we show how to compute PSNE (if one
exists) with the assumption of complete knowledge of bid-
ders’ valuations per click and the set of vindictive bidding
pairs. We restrict to Nash equilibria satisfying the follow-
ing property, which corresponds to assortative matching in
stable matching theory.

bi > bj if vi > vj , for all bidders i, j. (7)

Eq.(7) makes the task of computing NE quite easy. With-
out loss of generality, assume that

v1 > v2 > . . . > vk > vk+1 ≥ . . . ≥ vn.

If there are bidders with the same VPC value, we can break
the tie arbitrarily. The first k bidders will win the auction,
and the i-th bidder will obtain the i-th position, for 1 ≤ i ≤
k. For each vindictive bidding pair i, j with i > j, if i > j+1,
we ignore, since bidder j can only affect its immediate above
neighbor directly; if i = j + 1, then add the constraint

bj = bi − 0.01. (8)

Since the set of bids consist of a Nash equilibrium, by the
definition of NE, we have

ci(vi − bi+1) ≥ cj(vi − bj+1), ∀i < j ≤ k,

ci(vi − bi+1) ≥ cj(vi − bj), ∀j < i ≤ k.

Furthermore, for each bidder i > k, since it does not win the
auction, its utility is 0. Since it could not obtain a positive
utility by switching to one of the top k positions, thus

bk ≥ vk+1.

In summary, we obtain a set of linear constraints, with some
linear equality constraints, and some linear inequality con-
straints, and the total number of linear constraints is O(k2).
We can use a standard linear programming (LP) solver to
solve it in time polynomial of n, k. If the LP solver returns
with no solution, it implies that the keyword auction prob-
lem with the corresponding set of vindictive bidding pairs
has no PSNE. If the LP solver returns a solution, the so-
lution then translates into a PSNE for the corresponding
auction problem.

Even though we can compute a PSNE given a set of vin-
dictive bidding pairs assuming that bidding prices satisfy
the assortative matching property, it is not necessary for all
NE to satisfy this property. Thus to check whether there
exists a PSNE, we have to enumerate all possible orderings
of bidders based on their bidding prices, which is in the
order of n! = Ω((n/e)n). So the naive approach takes expo-
nential time and it is not feasible with even 20-30 bidders.
We leave it as an open problem whether it is NP-hard to
compute a PSNE given a set of vindictive bidding pairs if
one exists. We believe the answer is affirmative given that
the assortative matching property is economically efficient.
Another related problem is to either prove or disprove that
if there exists a PSNE, then there exists a PSNE satisfying
the assortative matching property.

5.1 Computing Symmetric Nash Equilibria
A subclass of Nash equilibria was studied independently

by Varian [10] and Edelman et al. [6], and it was termed
symmetric Nash equilibria by Varian and locally envy free
equilibria by Edelman et al. We will follow the terminol-
ogy by Varian and call it symmetric Nash equilibria (SNE).
Suppose that b1 > b2 > . . . > bn, then the set of bids corre-
sponds to a SNE if and only if

ci(vi − bi+1) ≥ cj(vi − bj+1), ∀i 6= j, 1 ≤ i, j ≤ n. (9)

SNE corresponds to a stable matching if you treat the
auction problem as matching advertisers to positions of the
search results page. The maximum revenue of NE is the
same as the maximum revenue of SNE, and the SNE with
minimum revenue corresponds to the VCG payment scheme
with truthful bidding agents. Among all other properties,
SNE satisfies the assortative matching property stated in
Eq. (7). Based on the discussion in the previous section,
this implies that we can compute a pure strategy SNE in
polynomial time. We can even compute a pure strategy SNE
much faster, as SNE is equivalent to the following simplified
conditions:

ci(vi − bi+1) ≥ ci+1(vi − bi+2), ∀1 ≤ i < n

ci(vi − bi+1) ≥ ci−1(vi − bi), ∀1 < i ≤ n

There are only 2n inequalities here. Together with Eqs. (8)
obtained from the input of vindictive bidding pairs, we ob-
tain the necessary and sufficient conditions for SNE. We can
solve the set of linear inequalities using a standard LP solver,
and here the number of linear inequalities is O(n + k). In
summary, we have the following theory:

Theorem 3. We can compute a pure strategy symmetric
Nash equilibrium if one exists by solving O(n + k) linear
inequalities. By using the algorithm of Karmarkar [7], it
can be computed in time O(n + k3.5).



6. OPEN PROBLEMS
Our work is an ongoing research activity, and it raises as

many questions as it settles. In the following, we propose
some intriguing open problems.

Right Amount of Vindictiveness. Intuitively too much
vindictiveness is harmful to you since these bidders will also
be vindictive to you. It is an intriguing problem for each
bidder to decide whether vindictive or cooperative to other
players. It is an interesting problem to characterize the set
of vindictive bidding pairs within a keyword auction which
always accept a PSNE.

Complexity of Computing PSNE. In Section 5, we
compute a PSNE with vindictive bidding pairs assuming
that assortative matching property holds. We conjecture
that if a PSNE exists then a PSNE with the assortative
matching property also exists. If the answer is affirma-
tive, then we can focus on classic PSNE with the assortative
matching property. It is an open problem whether it is NP-
hard to find a PSNE given the set of vindictive bidding pairs.
Even though computing Nash equilibria for general games is
an outstanding open problem, keyword auction is a special
case which may be easy to solve.

Multi-Round Game. Another interesting line of in-
vestigation is the multi-round setting, which is obviously of
practical importance. For pure strategies, it seems unlikely
that the analysis would change very much given the nature
of the real auction system. For example, the term “inkjet” is
queried approximately 20,000 times per month (on Yahoo),
or about 28 times per hour on average. Even assuming a
25% clickthrough rate, which is high, the expected num-
ber of clickthroughs per hour is then 7, suggesting a fairly
long waiting time between clicks. If a bidder tries to de-
viate from a one shot PSNE with vindictiveness, it seems
likely that the dynamics described in Section 3 would ensue
on a time scale faster than the characteristic waiting time
between actual clicks (and hence actual payments). Thus,
intuitively, the PSNE of the one shot game with vindictive-
ness could be a good characterization for the multi-period
game as well.

Mixed Strategy Nash equilibria. Another question is
the affect of vindictiveness on mixed strategy Nash equilib-
ria. In this, for the one shot game, vindictiveness is likely to
change the incentives with respect to mixed strategy equi-
libria without vindictiveness. For example, suppose the top
bidder is very high at $20 and the second and third bidders
are relatively low at $2.00 and $1.99 (such cases do occur in
practice). For this to be a PSNE with vindictiveness, the
first and second bidder cannot form a vindictive pair ac-
cording to our definition of weak vindictiveness. However, if
mixed strategies are allowed, it seems possible for the second
bidder to hurt the top bidder by randomly (with probability
p) raising his bid to be just below the top. This can be very
expensive for the top bidder. However, the third bidder can
reason similarly for hurting the second bidder. But the ran-
domness decreases the likelihood that the second player is
hurt since, roughly speaking, the probability that the sec-
ond bidder is hurt playing this mixed strategy would be p2,
assuming the third player is playing p as well.

7. CONCLUSION
Vindictive bidding is prevalent in sponsored search key-

word auctions, and it leads to instability of most traditional

Nash equilibria. It is thus very important to understand and
utilize this bidding strategy, and characterize the resulting
Nash equilibria. Our work is the first step in this direction.
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