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Abstract.

We study strategic issues in the Gale-Shapley stable marriage model. In the first part of the
paper, we derive the optimal cheating strategy and show that it is not always possible for a
woman to recover her women-optimal stable partner from the men-optimal stable matching
mechanism when she can only cheat by permuting her preferences. In fact, we show, using
simulation, that the chances that a woman can benefit from cheating are slim. In the second
part of the paper, we consider a two-sided matching market found in Singapore. We study the
matching mechanism used by the Ministry of Education (MOE) in the placement of primary
six students in secondary schools, and discuss why the current method has limited success in
accomodating the preferences of the students, and the specific needs of the schools (in terms
of the “mix” of admitted students). Using insights from the first part of the paper, we show
that stable matching mechanisms are more appropriate in this matching market, and explain
why the strategic behavior of the students need not be a major concern.
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1 Introduction

This paper is motivated by a study of the mechanism used to assign primary school students
in Singapore to secondary schools. The current assignment process requires that the primary
school students submit a rank ordered list of six schools to the Ministry of Education. Students
are then assigned to secondary schools based on their preferences, with priority given to those
with higher examination scores in the Primary School Leaving Examination (PSLE). The
current matching mechanism is plagued by several problems. We argue that a satisfactory
resolution of these problems necessitates the use of a stable matching mechanism (a complete
description appears in Section 4). In fact, two well-known stable matching mechanisms — the
students-optimal stable mechanism, and the schools-optimal stable mechanism — appear to
be natural candidates; however, neither of these mechanisms (nor any other stable matching
mechanism) is capable of eliciting truthful participation from all of the participants. Our main
purpose is to show that the students have very little room to misrepresent their preferences,
under either mechanism. While the strategic issues facing the students under the students-
optimal mechanism are well understood, the insights under the schools-optimal mechanism
appear to be new. The most suitable stable matching mechanism for the Singapore Posting
Exercise will ultimately be a variant of these two well-known matching mechanisms, as local
issues and features have to be incorporated. However, our results on simulation experiments
under the students-optimal and schools-optimal mechanisms suggest that, regardless of the
choice of the stable matching mechanism, the students have little incentive to misrepresent
their preferences. This addresses one of the major concerns of the participants in the Singapore
Posting Exercise.

A distinguishing feature of our model is that the participants are required to submit complete

preference lists. Strategic issues in the stable marriage problem have been explored in settings
that allow incomplete preference lists; but, to the best of our knowledge, no systematic study
has been made when complete preference lists are required. As we shall see, such a requirement
imposes a severe restriction on the strategic choices available to the participants, resulting
in substantially reduced incentives to cheat. To study the immunity of the schools-optimal
mechanism to cheating by the students, we need to first determine the optimal cheating strategy
in the classical stable marriage model where the participants are only allowed to cheat by
reversing the true preference order of acceptable partners; They are not allowed to truncate
the preference list, as is the case usually considered in the literature. The main result of this
paper shows that this problem can be solved in polynomial time, using a simple extension of
the classical Gale-Shapley algorithm.

Preliminaries. Stable matching problems were first studied by Gale and Shapley (1962). In
a stable marriage problem there are two finite sets of participants: the set of men (M) and
the set of women (W ). We assume that every member of each sex has strict preferences over
the members of the opposite sex. In the model that allows rejection, the preference list of
a participant can be “truncated” in the sense that participants have the option of declaring
some others as unacceptable; in this model, we also include the possibility that a participant
may be unmatched, i.e. the participant’s assigned partner in the matching is himself/herself.
In contrast, in the Gale-Shapley model, the preference lists of the participants are required to
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be complete, and no one is to be declared as unacceptable. A matching is just a one-to-one
mapping between the two sexes such that a man m is mapped to a woman w if and only w is
mapped to m, and m and w are acceptable to each other. (In the economics literature, this
is defined as an individually rational matching.) A matching µ is said to be unstable (under
either model) if there is a man-woman pair, who both prefer each other to their partners in
µ; this pair is said to block the matching µ, and is called a blocking pair for µ. A stable

matching is a matching that is not unstable. The significance of stability is best highlighted
by a system where acceptance of the proposed matching is voluntary. In such a setting, an
unstable matching cannot be expected to remain intact, as the blocking pair(s) may discover
that they could both improve their match by joint action: the man and woman involved in a
blocking pair could just “divorce” their respective partners and “elope.”

In addition to formulating several versions of the stable matching problem, Gale and Shapley
(1962) described a simple algorithm that always finds a stable matching for any instance of
the stable marriage problem. This elegant result sparked the interest of many researchers,
resulting in a thorough investigation of the structural properties of the stable marriage model.
A property that is especially relevant to our study is that the set of all stable matchings for an
instance of the stable marriage problem forms a lattice, with the extremal elements being the
so-called men-optimal and women-optimal stable matchings. In fact, the algorithm of Gale and
Shapley (1962) that established the existence of a stable marriage constructs a men-optimal

stable matching. This algorithm is commonly known as the men-propose algorithm because
it can be expressed as a sequence of “proposals” from the men to the women. Note that the
Gale-Shapley algorithm can be easily adapted to yield a women-optimal stable matching by
simply interchanging the roles of men and women; this is commonly called the women-propose

algorithm. All of the results in this paper will be stated under the assumption that the men-

optimal stable matching mechanism is used; by interchanging the role of men and women,
analogous results can be derived for the women-optimal mechanism.

Strategy. Consider a market in which men and women submit their preference lists to a cen-
tralized agency, which matches the participants by computing the men-optimal stable match-
ing. An important difficulty that arises is that this matching mechanism is manipulable by the
women: some women can intentionally submit false preferences and obtain better partners.
Such (strategic) questions have been studied for the stable marriage problem by mathematical
economists and game theorists, with the goal of quantifying the potential gains of a deceitful
participant. An early result in this direction is due to Roth (1982), who proved that when
the men-optimal mechanism is used, none of the men benefits by submitting false preferences,
regardless of how the other participants report their preferences. By submitting a false pref-
erence list, a man can, at best, obtain his (true) optimum stable partner, which he obtains
anyway by submitting his true preference list. In game-theoretic parlance, stating true prefer-
ences is a dominant strategy for the men. However, Gale and Sotomayor (1985b) showed that
the women can still force the men-optimal mechanism to return the women-optimal solution.
The optimal cheating strategy in this case is simple: each woman w submits a preference list
that is the same as her true preference list, except that she declares men who rank below
her women-optimal partner as unacceptable. Our main goal in this paper is to study the
analogous question in the Gale-Shapley model, in which all the participants are required to
submit complete preference lists. We emphasize that we consider only a centralized market
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that computes the men-optimal matching, and all the men and women can only manipulate
the outcome by permuting their preference lists. We do not consider a decentralized market,
where manipulation possibilities are richer, nor do we consider other ways of manipulating the
outcome.

Motivation. The motivation for studying strategic questions in the Gale-Shapley model is
the Singapore school-admissions problem (referred to hereafter as the MOE problem) briefly
described earlier. Currently, the schools are merely seen as resources by the Ministry to be
allocated to students. Furthermore, for ease of implementation, each student is only allowed
to submit six choices, and the Ministry pads each list by ranking the remaining schools using
location as the only criterion (schools close to the student’s home are ranked higher). All
assignments are done in a centralized manner, and no student is allowed to approach the
schools privately for admission purposes.

However, such passive roles for the schools will change in the near future. In preparation for
a knowledge-based economy, the Ministry has reiterated its intention to shift from the current
examination-oriented system to one that focuses on ability-driven education. In line with this
goal, the Ministry intends to give the schools administrative and professional autonomy. Stu-
dent assessments will also be reviewed to meet the objective of developing creative independent
learners. The new university admissions system to be implemented from 2003 will not rely
solely on the GCE A-level exam results, but instead make a holistic evaluation of a student’s
potential. The current assignment process of students to schools is not consistent with this
new focus of the Ministry. Furthermore, the design of the current assignment process has also
given rise to several operational problems (see Section 4), and our purpose is to argue that a
centralized stable matching mechanism of the type proposed by Gale and Shapley is superior.
Our goal, in the end, is to convince the readers that regardless of whether the students-optimal
or schools-optimal mechanism is used, there is no significant incentive for the students or the
schools to strategize and exploit the system.

There is an obvious relation between the MOE problem and the stable marriage problem
introduced earlier — in the MOE problem, the students play the role of “women” and the
secondary schools play the role of “men.” Observe that there is also a crucial difference: in
the MOE problem, many “women” (students) can be assigned to the same “man” (secondary
school), whereas in the stable marriage model we require that the matching be one-to-one.
Since the students (schools) in this setting are not allowed to declare any school (student) as
unacceptable, the MOE problem can be modeled as a many-to-one matching problem with
complete preference lists.

The issues of strategic manipulation in the stable marriage model with rejection are well-
understood (cf. Roth and Sotomayor 1991 and the references therein). However, little is known
in the case of stable marriage models (one-to-one and many-to-one) without rejection, which,
as we discussed, is a more suitable representation of the MOE problem; a notable exception
is the recent work of Tadenuma and Toda (1998), in which they consider the implementation
question, and show that no stable matching correspondence can be implemented in Nash
equilibrium as long as |M | = |W | > 2. (Stronger non-implementability results hold for the
rejection model, see Kara and Sonmez 1996.)
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Results and structure of the paper. To derive insights into the strategic behavior of
the participants in the MOE problem, we first consider the one-to-one model, and study the
following question: In the stable marriage model with complete preferences, with the men-
optimal mechanism, is there an incentive for the women to cheat? If so, what is an optimal

cheating strategy for a woman? Can a woman always force the mechanism to return her women-
optimal partner? In Section 2 we present the main result of this paper: an optimal cheating
strategy can be constructed in polynomial time. A related issue concerns the robustness
of the men-optimal mechanism. In the rejection model, it is well known that the women
can easily manipulate the men-optimal mechanism, and in fact, almost all the women will
submit false preferences. In sharp contrast, our results for the Gale-Shapley model in section
3 provide evidence that the men-optimal mechanism is fairly robust, and that there is very
little incentive for the women to cheat. In particular, restricting the strategic choices of the
women drastically reduces their benefits from cheating, thereby reducing the possibility that a
woman will cheat. Armed with this theoretical understanding of the Gale-Shapley model, we
prescribe some recommendations in Section 4 to improve the current “matching mechanism”
used in the Singapore MOE Secondary School Posting Exercise. In particular, we argue that
a stable matching mechanism is more appropriate for the MOE problem, and that some of
the other difficulties inherent in the present system can be effectively addressed by a stable
matching mechanism.

It is instructive to compare our results to some recent results obtained in a very interesting
study by Roth and Rothblum (1999). In a centralized many-to-one market (with rejection
allowed) operating under the schools-optimal mechanism, Roth and Rothblum consider the
strategic issues facing the students. In a low information environment, where preferences of
the other participants are not known with certainty, they conclude that stating preferences that

reverse the true preference order of two acceptable schools is not beneficial to the students, while

submitting a truncation of the true preferences may be. Our simulation-based experimental
results in this paper suggest that this observation is valid even in the perfect information

setting, i.e., knowing the reported preferences of all the other participants may still not allow
one to benefit from cheating, if one is only allowed to reverse the order of the schools, but not
allowed to submit a truncated list.

Finally, we note that the strategic issues facing the schools, under the schools-optimal mech-
anism, is a non-trivial problem: Roth (1985) showed that, contrary to the one-to-one case, the
schools-optimal matching need not even be weakly-pareto optimal for the schools, and there is
no stable matching mechanism that makes it a dominant strategy for all the schools to state
their true preferences. We shall see in Section 4 why this is not an important issue in the MOE
problem.

2 Optimal cheating in the Gale-Shapley model

Our standing assumption in this paper is that woman w is the only deceitful participant,
and that she knows the reported preferences of all the other participants, which remain fixed
throughout. We shall show, eventually, that cheating opportunities for woman w are un-
common, in spite of the assumption that she has perfect information. We consider only a
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centralized market, although the algorithm is phrased as a sequence of proposals from the men
to the women. We visualize the deceitful woman as running this algorithm in her head and sub-
mitting the optimal cheating strategy thus computed as her preference list to the centralized
market.

We shall begin by considering the following question: Consider a centralized market in which
the men-propose algorithm is literally used to compute the men-optimal matching. Suppose
woman w has no knowledge of the preferences of any of the other participants, and that she
is the only deceitful participant. Suppose also that she is allowed to reject proposals. Is
it possible for her to identify her women-optimal partner by just observing the sequence of
proposals she receives? Somewhat surprisingly, the answer is yes! If w simply rejects all the
proposals made to her, then the best (according to her true preference list) man among those
who propose to her is her women-optimal partner. Our algorithm for finding the optimal
cheating strategy in the Gale-Shapley model builds on this insight: woman w rejects as many
proposals as possible, while remaining engaged to some man who proposed earlier in the
algorithm. Using a backtracking scheme, she uses the matching mechanism repeatedly to find
her optimal cheating strategy. Given our standing assumption that woman w has complete
knowledge of the reported preferences of the other participants, and that she is the only agent
acting strategically, it is clear what she would do: she would run the algorithm to find her
optimal cheating strategy privately, and submit this (optimal) preference list to the centralized
market.

2.1 Finding your optimal partner

We first describe Algorithm OP—an algorithm to compute the women-optimal partner for w
using the men-propose algorithm. (Recall that we do this under the assumption that woman
w is allowed to remain single.)

Algorithm OP

1. Run the men-propose algorithm, and reject all proposals made to w. At the end, w and
a man, say m, will remain single.

2. Among all the men who proposed to w in Step 1, let the best man (according to w) be
m′.

Theorem 1 m′ is the women-optimal partner for w.

Remark. Gale and Sotomayor (1985b) showed that when each woman declares all the men
inferior to her women-optimal partner as unacceptable, then the men-optimal mechanism will
be forced to return the women-optimal stable matching. This is because the only stable
matching solution for the modified preference lists is the women-optimal solution (with respect
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to the original preference lists). To prove our result, however, we have to show that when a
woman unilaterally declares all the men as unacceptable, this is enough to induce her optimal
partner to propose to her in the course of executing the men-propose algorithm. Furthermore,
we need to show that no higher-ranked man on her list will propose to her even after she rejects
the proposal from her optimal partner.

Proof of Theorem 1. Let µ(w) denote the women-optimal partner for w. We modify w’s
preference list by inserting the option to remain single in the list, immediately after µ(w). (We
declare all men that are inferior to µ(w) as unacceptable to w.) Consequently, in the men-
propose algorithm, all proposals inferior to µ(w) will be rejected. Nevertheless, since there
is a stable matching (with respect to the original preferences) with w matched to µ(w), our
modification does not destroy this solution, i.e., this solution remains stable with respect to
the modified list. It is also well known that in any stable matching instance, the set of people
who are single is the same for all stable matchings (cf. Roth and Sotomayor 1990, pg. 42).
Thus, w must be matched in all stable matchings with respect to the modified preference list.
The men-optimal matching for this modified preference list must match w to µ(w), since µ(w)
is now the worst partner for w with respect to the modified list. In particular, µ(w) must
have proposed to w during the execution of the men-propose algorithm. Note that until µ(w)
proposes to w, the men-propose algorithm for the modified list runs exactly in the same manner
as in Step 1 of OP . The difference is that Step 1 of OP will reject the proposal from µ(w),
while the men-propose algorithm for the modified list will accept the proposal from µ(w), as
w prefers µ(w) to being single. Hence, clearly µ(w) is among those who proposed to w in Step
1 of OP , and so m′ ≥w µ(w).

Suppose m′ >w µ(w). Consider the modified list in which we place the option of remaining
single immediately after m′. We run the men-propose algorithm with this modified list. Again,
until m′ proposes to w, the algorithm runs exactly the same as in Step 1 of OP , after which
the algorithm returns a stable partner for w who is at least as good as m′ according to w
(under both the original and the modified lists, since we have not altered the order of the men
before m′ on the list). The matching obtained is thus stable with respect to the original list.
This contradicts our earlier assumption that µ(w) is the best stable partner for w.

Suppose w is allowed to modify her preference list after each run of the men-propose al-
gorithm, and the algorithm is to be repeated until w concludes that she has found her best
possible partner. Theorem 1 says essentially that knowing the set of proposals woman w re-
ceives is enough to allow her to construct her optimal cheating strategy, if she is allowed to
declare certain men as unacceptable; she does not need not know the preferences of any of the
other participants involved, as long as they behave truthfully! In the next section, we shall use
this insight to construct an optimal cheating algorithm for w, under the additional restriction
that she is not allowed to declare any man as unacceptable.
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2.2 Cheating your way to a better marriage

Observe that the procedure of section 2.1 only works when woman w is allowed to remain
single throughout the matching process. Suppose the central planner does not give the woman
an option to declare any man as unacceptable. How do we determine her best attainable
partner by manipulation? This is essentially a restatement of our original question: who is the
best stable partner woman w can have when the men-optimal mechanism is used and when
she can lie only by permuting her preference list. Note that the preferences of the remaining
participants (except woman w) are fixed throughout.

A natural extension of Algorithm OP is for woman w to: (i) accept a proposal first, and then
reject all future proposals; (ii) from the list of men who proposed to her but were rejected,
find her most preferred partner; repeat the men-propose algorithm until the stage when this
man proposes to her; (iii) reverse the earlier decision and accept the proposal from this most
preferred partner, and continue the men-propose algorithm by rejecting all future proposals;
and (iv) Repeat (ii) and (iii) until w cannot obtain a better partner from all other proposals.
Unfortunately, this simple strategy does not always yield the best stable partner a woman can
achieve under the Gale-Shapley model. The reason is that this greedy improvement technique
does not allow for the possibility of rejecting the current best partner, in the hope that this
rejection will trigger a proposal from a better would-be partner. Our algorithm in this paper,
which is described next, does precisely that. An illustrative example appears soon after the
description of the algorithm.

Let P (w) = {m1,m2, . . . mn} be the true preference list of woman w, and let P (m,w) be
a preference list for w so that the men-propose algorithm will return m as her men-optimal
partner. In the case that man m cannot be obtained by w as her men-optimal partner for any
preference list, we set P (m,w) to be the null list, as a matter of convention. Our algorithm
constructs P (m,w) (if man m is attainable by woman w) or determines whether P (m,w) is
the null list (if man m is not attainable by woman w) iteratively, and consists of the following
steps:

1. Run the men-propose algorithm with the true preference list P (w) for woman w. Keep
track of all men who propose to w. Let the men-optimal partner for w be m, and let
P (m,w) be the true preference list P (w).

2. Suppose mj proposed to w in the men-propose algorithm. By moving mj to the front of
the list P (m,w), we obtain a preference list for w such that the new men-optimal partner
(after running the men-propose algorithm on this modified list) is mj . Let P (mj, w) be
this altered list. We say that mj is a potential partner for w.

3. Repeat step 2 to obtain a preference list for every man (other than m) who proposed
to woman w in the algorithm; after this, we say that we have exhausted man m, the
men-optimal partner obtained with the preference list P (m,w). All potential partners of
w that come from running the men-propose algorithm using the list P (m,w) have been
found.

4. If a potential partner for w, say man u, has not been exhausted, run the men-propose
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algorithm with P (u,w) as the preference list of w. Identify new potential partners.
Repeat Step 2-3 with u in place of m.

5. Repeat Step 4 until all potential partners of w are exhausted. Let N denote the set of
all potential (and hence exhausted) partners for w.

6. Among the men in N let ma be the man woman w prefers most. Then P (ma, w) is an
optimal cheating strategy for w.

The men in the set N at the end of the algorithm have the following crucial properties:

• For each man m in N , there is an associated preference list for w such that the men-
propose algorithm returns m as the men-optimal partner for w with this list.

• All other proposals in the course of the men-propose algorithm come from other men in
N . (Otherwise, there will be some potential partners who are not exhausted.)

With each run of the men-propose algorithm, we exhaust a potential partner, and so this
algorithm executes at most n men-propose algorithms before termination.

Example 1. Consider the following stable marriage problem:

1 2 3 4 5 1 1 1 2 3 5 4
2 3 4 5 1 2 2 2 1 4 5 3
3 5 1 4 2 3 3 3 2 5 1 4
4 3 1 2 4 5 4 4 5 1 2 3
5 1 5 2 3 4 5 5 1 2 3 4

True Preferences of the Men True Preferences of the Women

We construct the optimal cheating strategy for woman 1 using the algorithm described earlier.

• Step 1: Run the men-propose algorithm with the true preference list for woman 1; her
men-optimal partner is man 5. Man 4 is the only other man who proposes to her during
the men-propose algorithm. So P (man 5,woman 1) = (1, 2, 3, 5, 4).

• Step 2-3: Man 4 is moved to the head of woman 1’s preference list; i.e., P (man 4,woman 1)
= (4, 1, 2, 3, 5). Man 5 is exhausted, and man 4 is a potential partner.

• Step 4: As man 4 is not yet exhausted, we run the men-propose algorithm with P (man 4,
woman 1) as the preference list for woman 1. Man 3 is identified as a new possible partner,
with P (man 3,woman 1) = (3, 4, 1, 2, 5). Man 4 is exhausted after this.
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• Repeat Step 4: As man 3 is not yet exhausted, we run the men-propose algorithm with
P (man 3,woman 1) as the preference list for woman 1. Man 3 will be exhausted after
this. No new potential partner is found, and so the algorithm terminates.

Remark. Example 1 shows that woman 1 could cheat and get a partner better than her
men-optimal partner. However, her women-optimal partner in this case turns out to be man 1.
Hence Example 1 also shows that woman 1 cannot always assure herself of her women-optimal
partner through cheating, in contrast to the case when rejection is allowed in the cheating
strategy.

We conclude this section by stating and proving the main result. Recall that ma is the
best man according to w’s true preference list among the men in set N constructed by the
algorithm.

Theorem 2 π = P (ma, w) is an optimal strategy for woman w.

Proof. (by contradiction) We use the convention that r(m) = k if man m is the kth man
on woman w’s true preference list. Let π∗ = {mp1,mp2, . . . ,mpn} be a preference list that
gives w her best stable partner when the men-optimal mechanism is used. Let this man be
denoted by mpb, and let woman w strictly prefer mpb to ma (under her true preference list),
i.e., r(mpb) < r(ma). Observe that the order of the men who do not propose to woman w is
irrelevant and does not affect the outcome of the men-propose algorithm. Furthermore, men of
rank higher than r(mpb) do not get to propose to w, otherwise we can cheat further and improve
on the best partner for w, contradicting the optimality of π∗. Thus we can arbitrarily alter the
order of these men, without affecting the outcome. Without loss of generality, we may assume
that 1 = r(mp1) < 2 = r(mp2) < . . . < b = r(mpb). Since r(mpb) < r(ma), ma will appear
somewhere after mpb in π∗: thus, ma can be any of the men in the list mp(b+1),mp(b+2), . . . mpn.

Now, we modify π∗ such that all men who (numerically) rank lower than ma but higher than
mpb (under true preferences) are put in order according to their ranks. This is accomplished
by moving all these men before ma in π∗. With that alteration, we obtain a new list π̃ =
{mq1,mq2, . . . ,mqn} such that:

(i) 1 = r(mq1) < 2 = r(mq2) < . . . < s = r(mqs).

(ii) mq1 = mp1 . . . mqb = mpb, where the position of those men who rank higher than mpb is
unchanged.

(iii) r(ma) = s + 1, ma ∈ {mq(s+1),mq(s+2), . . . mqn}.

(iv) The men in the set {mq(s+1),mq(s+2), . . . mqn} retain their relative position with respect
to one another under π∗.

Note that the men-optimal partner of w under π̃ cannot come from the set { mq(s+1),mq(s+2),. . .
mqn}. Otherwise, since the set of men who proposed in the course of the algorithm must come
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from {mq(s+1),mq(s+2), . . . mqn}, and since the preference list π∗ retains the relative order of
the men in this set, the same partner would be obtained under π∗. This leads to a contradic-
tion as π∗ is supposed to return a better partner for w. Hence, we can see that under π̃, we
already get a better partner than under π.

Now, since the preference list π returns ma with r(ma) = s+1, we may conclude that the set
N (obtained from the final stage of the algorithm) does not contain any man of rank smaller
than s + 1. Thus N ⊆ {mq(s+1),mq(s+2), . . . mqn}. Suppose mq(s+1),mq(s+2), . . . ,mqw do not
belong to the set N , and mq(w+1) is the first man after mqs who belongs to the set N . By
construction of N , there exists a permutation π̂ with mq(w+1) as the stable partner for w under
the men-optimal mechanism. Furthermore, all of those who propose to w in the course of the
algorithm are in N , and hence they are no better than ma to w. Furthermore, all proposals
come from men in {mq(w+1),mq(w+2), . . . mqn}, since N ⊆ {mq(s+1),mq(s+2), . . . mqn}.

By altering the order of those who did not propose to w, we may assume that π̂ takes the
following form: {mq1,mq2, . . . ,mq(s−1),mqs, . . . ,mqw,mq(w+1), . . .}, where the first qw+1 men
in the list are identical to those in π̃. But, the men-optimal stable solution obtained using
π̂ must also be stable under π̃, since w is match to mq(w+1), and the set of men she strictly
prefers to mq(w+1) is identical in both π̂ and π̃. This is a contradiction as π̃ is supposed to
return a men-optimal solution better than ma.

This implies that π∗ does not exist, and so π is optimum and ma is the best stable partner
w can get by permuting her preference list.

3 Strategic Issues in the Gale-Shapley Problem

By requiring the women to submit complete preference lists, we are clearly restricting their
strategic options; thus many of the strong structural results known for the rejection model
may not hold for the Gale-Shapley model. This is good news, for it reduces the incentive for
a woman to cheat. In this section, we present several examples to show that the strategic
behavior of the women can be very different under the models with and without rejection.

3.1 The best man (obtained from cheating) may not be women-optimal

In the two-sided matching model with rejection, it is not difficult to see that the women can
always force the men-optimal mechanism to return the women-optimal solution (for instance,
each woman declares as unacceptable those men who are inferior to her true women-optimal
partner). In the Gale-Shapley model, which forbids rejection, the influence of the women is far
less, even if they collude. A simple example is when each woman is ranked first by exactly one
man. In this case, there is no “conflict” among the men, and in the men-optimal solution, each
man is matched to the woman he ranks first. In this case, the algorithm will terminate with
the men-optimal matching, regardless of how the women rank the men in their lists. So ruling
out the strategic option of remaining single for the women significantly affects their ability to
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change the outcome of the game by cheating.

By repeating the above analysis for all the other women in Example 1, we conclude that, by
cheating unilaterally, the best possible partners for women 1, 2, 3, 4, and 5 are, respectively,
men 3, 1, 2, 4, and 3. An interesting observation is that woman 5 cannot benefit by cheating
alone (she can only get her men-optimal partner no matter how she cheats). However, if woman
1 cheats using the preference list (3, 4, 1, 2, 5), woman 5 will also benefit by being matched to
man 5, who is first in her list.

3.2 Does cheating pay?

Roth (1982) shows that under the men-optimal mechanism, the men have no incentive to alter
their true preference lists. In the rejection model, however, Gale and Sotomayor (1985a) show
that a woman has an incentive to cheat as long as she has at least two distinct stable partners.
From Pittel (1989), we know that the average number of stable matchings is asymptotically
nlog(n)/e, and with high probability, the rank of the women-optimal and men-optimal part-
ners for the women are, respectively, log(n) and n/log(n). Thus, in typical instances of the
stable marriage game under the rejection model, most of the women will not reveal their true
preferences.

Many researchers have argued that the troubling implications from these studies are not
relevant in practice, as the model assumes that the women have complete knowledge of all the
other participants, as well as their preference lists. For the Gale-Shapley model we consider,
it is natural to ask whether it pays (as in the rejection model) for a typical woman to solicit
information about the preferences of the remaining participants in the game.

Example 2. We have designed a Visual Basic package for the stable marriage problem
with complete preference lists. The following example, in one of the simulation experiments,
illustrates the dramatic difference in the behavior of the women in the models with and without
rejection:

In the example, the men and women are labelled from 1 to 8. Both man i and woman i have
identical preference lists. The number next to the list in Figure 1 represents the men-optimal
and women-optimal partners of each participant. For instance, man 1 and woman 1 have
preference lists “64782351” (i.e. man 1 prefers woman 6 to woman 4 to woman 7, etc., and
similarly woman 1 prefers man 6 to man 4 to man 7, etc.). Under the men-optimal mechanism,
man 1 is matched to woman 6, and woman 1 is matched to man 7. Thus the women-optimal
partner for woman 1 is man 6 (from symmetry), and so she has an incentive to lie about her
preferences. In fact, this example shows that 6 out of the 8 women benefit from cheating in
the rejection model. The situation for the Gale-Shapley model is very different: given that the
women can only misrepresent their preferences by order reversals, no woman can benefit from
cheating!

We ran the algorithm on 1000 instances, with preferences of each individual generated uni-
formly at random, for n = 8. The number of women who benefit from cheating is tabulated



12

Figure 1: Stable Marriage model with rejection versus one without rejection

in Table 1.

Number of Women who benefited 0 1 2 3 4 5 6 7 8

Number of observations 740 151 82 19 7 1 0 0 0

Table 1

Interestingly, the number of women who benefit from cheating is surprisingly low. In fact, in
74% of the instances, the men-optimal solution is their only option, no matter how they cheat.
The average percentage of women who benefit from cheating is merely 5.06.

To look at the typical strategic behavior on larger instances of the stable marriage problem,
we ran the heuristic on 1000 random instances for n = 100. The cumulative plot is shown in
Figure 2. In particular, in more than 60% of the instances at most 10 women (out of 100)
benefited from cheating, and in more than 96% of the instances at most 20 women benefited
from cheating. The average number of women who benefited from cheating is 9.515%. Thus,
the chances that a typical woman can benefit from acquiring perfect information (i.e., knowing
the preferences of the other participants) is slim in the Gale-Shapley model.

We have performed similar experiments for large instances of the Gale-Shapley model. Due
to computational requirements, we can only run the experiment on 100 random instances of
the problem with 500 men and women. The insights obtained from the 100 by 100 cases carry
over: the number of women who benefit from cheating is again not more than 10% of the total
number of the women involved. In fact, the average was close to 6% of the women population
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Figure 2: Benefits from cheating

in the problem. This suggests that the number of women who benefit from cheating in the
Gale-Shapley model with n women grows at a rate slower than a linear function of n. A
detailed probabilistic analysis of this phenomenon is a challenging problem, which we leave for
future research.

4 Singapore MOE Posting Exercise

The admission to secondary schools in Singapore is centrally controlled. A distinguishing
feature of the Singapore school admissions problem (MOE problem) is that the students are
not allowed to remain unassigned at the end of the posting exercise, and that the schools are
not allowed to reject any students if there are still places available. In what follows, we first
present a summary of the current matching mechanism, along with a brief description of its
shortcomings in section 4.1. In section 4.2, we explain why a stable matching solution is more
appropriate, and how some of the problems under the current system can be addressed using
a stable matching mechanism.

4.1 Current Assignment Process

Prior to taking their Primary School Leaving Examination (PSLE), the students are required
to submit (around August) their rank ordering of schools to the Ministry of Education (MOE),
which oversees the posting exercise. In the option form, each student is required to list six

secondary schools she would like to attend, in order of decreasing desirability. The students
(rather, their parents) are advised by the MOE to make realistic choices because the preference
list, once submitted, cannot be changed. After the PSLE results are announced, the top ten
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percent performers are given a second option to indicate their preferences for the Independent
schools and the Special Assistance Plan (SAP) schools. These are the elite schools in Singapore
that admit only the top students.

The posting of students to secondary schools is (partially) computerized. All students are
ranked according to their aggregate PSLE scores regardless of their choices. Currently, the
assignment of students to schools is conducted in multiple phases, which are as follows:

Phase 1. Consider the top students who have applied to the independent schools in the
second option, and assign them to these schools.

Phase 2. Consider the top students who have applied to SAP schools in the second
option, and assign them to SAP schools.

Phase 3. For historical and administrative reasons, certain secondary schools have
affiliated primary schools. This is to foster closer collaboration between the primary and
secondary schools. Students who opt to go to the affiliated secondary schools will be
given higher priority. Consider all students who have selected their affiliated secondary
school as their top choice, and assign them to the affiliated schools (subject to availability
of places).

Phase 4. Consider the remaining students one by one, and match them to the schools
according to the choices they made in August.

Note that in the process of assigning the students to schools, a student who ranks his af-
filiated secondary school as his first choice is given priority for that school. In this way, the
current assignment process has managed to incorporate some of the schools’ selection criterion,
which actually place more importance on “affiliation” than on performance in the PSLE; not
all students, however, can gain admission to their affiliated secondary schools because such
admissions are subject to vacancies in these schools. When a student fails to get admission
to any of the schools of her choice, she is assigned (manually) to a school (in nearby postal

districts) that still has vacancies. If there is no such school available, the student is assigned
(manually) to a school in some other postal district that still has vacancies. The students are
notified of the schools they are assigned to by late December, just in time for the new school
semester, which starts early January. The current system is plagued with several problems,
some of which are as follows.

Problem 1. Decision-making by the parents is complicated by the fact that (i) Parents are
only given limited options to express their preferences, and (ii) Parents have to make their
decisions prior to the release of the PSLE scores. Knowing that many good students will be
applying to the good schools, parents cannot afford to reveal their true preferences. If they
were to list down just the ideal top six schools as their six choices, they run the risk of being
rejected by all these six schools—this happens if their child performs below their expectations
in the PSLE and fails to qualify for these schools. Worse, this may actually result in their
child getting into a school that is completely out of their consideration, as manual posting
would then be carried out. The parents are thus forced to be more “realistic” when choosing
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the schools for their child. Consequently, the parents are faced with the difficult problem of
optimally utilizing the six options provided by the MOE.

The MOE has tried to simplify matters for the parents by providing them with information
such as the schools’ cut-off points for the previous year to help them make rational decisions.
In recent years, the MOE has also provided a rating of all the schools in Singapore so that
the parents will be better informed of the schools’ strengths and weaknesses. However, this
still does not address the parents’ major concern in formulating their choices: they have to
submit their choices before their children take the examination! In fact, one parent lamented
on a national newspaper: “How do we choose when we do not know how they will do at the
national level?” (The Straits Times, 17 August 1996). A good matching mechanism should

allow the students to submit their true ranking list, without the need to strategize based on their

PSLE results.

We note that it is not possible for the Ministry to solicit the students’ options after the
release of the examination results, due to the tight time span between the release of results
and the start of the new school term.

Problem 2. Another problem with the current assignment process is that other than affili-
ation, the genuine preferences of the schools are not considered. The schools have to accept
the students assigned to them under the process. Furthermore, the number of places available
in the school is also largely determined by the MOE. In order to attract the desired students,
many schools, especially the newer ones, resort to advertising campaigns such as organizing
open houses, sending brochures to parents, and conducting talks at primary schools. Though
such marketing efforts help, schools still depend significantly on the ST School 100 ranking
(provided by the MOE) to attract their desired students. However, since the ST ranking is
decided mainly by the schools’ performance in the GCE ‘O’ level examination, over-reliance
on the ranking could induce the schools to over-emphasize the importance of academic results.
This is clearly an undesirable repercussion as it actually impedes the Singapore government
from achieving the “Thinking Schools, Learning Nation” vision. A good matching mechanism

should allow the schools to rank the students using different criteria, depending on the strength

and areas of excellence the schools wish to emphasize.

Problem 3. A third problem lies in the logic of the current assignment process at phase
4 of the exercise. When all the 6 choices are exhausted, the students are then assigned to
schools in nearby postal districts. However, according to a 1992 survey (The Straits Times, 19
August 1992), only 30% of the respondents think that the distance to school is an important
factor in their selection of schools! While this is a non-negligible fraction of the respondents,
it is distressing that several other factors, considered more important by the respondents, were
completely ignored in the current assignment process. The major factors identified in the
survey are:
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Which Factors Matter Most Average Score (out of 10)

Quality of O-level passes 7.5

Percentage of O-level passes 7.4

Entry cut-off points 6.6

Value-added 6.6

Percentage of students accepted 6.1

ECA performance 4.9

Other factors considered very important Percentage of decision makers

Quality of teachers 88%

School Discipline 82%

Quality of principal 58%

School reputation 50%

Range of school facilities 35%

Distance from school 30%

Friends in the school 30%

Although a substantial number (30%) of respondents think that distance to school is impor-
tant, and hence they have no reason to worry about this criterion under the current assignment
process, it is interesting to note that 70% of respondents do not consider distance to school as
an important factor in their ranking of schools. The current system are not able to cater to
these people in its assignment. A good assignment process should match all students to schools

according to the true preferences of the students.

Problem 4. Finally, since the examination results are released only in late November, the
MOE can only obtain the second option form not earlier than early December. As such,
the entire assignment process is conducted only in a span of two weeks as the assignments
have to be made known to the students by the third week of December. An unfortunate event
developed in December 1997 when the Ministry had to apologize publicly for an administrative
error:

“It has been discovered that there were some discrepancies in the posting of pupils
within the Normal (academic) course; 3,278 pupils out of a total of 9,417 are
affected. The ministry is re-posting the 3,278 pupils. ” (The Straits Times,
December 1997)

The ministry apologized for the error and said that the error occurred when wrong data was
entered into its computers during the assignment process. The human error was discovered
only when “the ministry checked again and the parents gave feedback.” This ultimately led to
some resentment and confusion among the students and parents, as some of them had already
bought the books and met the teachers in their previously assigned secondary school. The
fact that the re-assignment was made barely a week before the commencement of the new
school term aggravated the seriousness of the human errors. As far as possible, the matching

mechanism should be fully automated to mitigate the chances of human errors, and reduce the

time taken to post students to schools.
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4.2 Benefits of Stable Matching Mechanisms

The current posting method is appropriate for the old paradigm in which the schools are all
alike, and thus are viewed as resources to be allocated to the students. Also, assigning the
students to schools according to merit is a simple and convenient way to solve the matching
problem. However, in recent years, this problem has assumed a new dimension as it is generally
recognized that examination results alone are not a good way of assessing the merit of the
students. Thus, elaborate mechanisms are now being put in place to assess the students in an
all-round fashion. In the future, it will no longer be possible to have a single list that ranks all
the students according to merit. Also, given that the schools are being encouraged to develop
their own identity and strength, it is highly debatable whether the schools will all rank the
students in the same way. Currently, besides affiliation, the assignment process cannot handle
school-specific criteria. By moving to a new paradigm in which schools are allowed to devise
their own criteria to rank the students, and assigning the students to schools via a stable
matching mechanism, we can address some of the problems outlined in section 4.1. Under
this new mechanism, the limit on the number of choices each student is entitled to should be
removed, since this is one of the root causes for the problems faced by the students in the
current system. Although this will lead to an additional burden on the system (data collection
and processing), the benefits that accrue will be well worth the effort.

With these changes, we can have a fully automated matching mechanism that can capture the

true preferences of the students, and allow the schools to turn from passive to active participants
in the assignment process. This immediately addresses problems 2-4 outlined in section 4.1.
We argue next that in a stable matching mechanism implementation, it is unlikely that the
students will benefit significantly from misrepresenting their preference lists. In particular, we
analyze the strategic issues under the students-optimal and schools-optimal mechanisms.

Students-optimal mechanism. It follows from classical results in stable matching (cf.
Roth 1982) that in this model, the students have no incentive to misrepresent their preferences.
However, the strategic behavior of the schools is not well-understood. In fact, to the best of
our knowledge, the question of finding the optimal cheating strategy for the schools is still
open and appears to be a difficult problem. For the MOE problem, however, this is less of
a concern, since proper management mechanisms can be instituted by the MOE to prevent
the schools from misrepresenting their preferences. For instance, by working with the schools
to determine their strengths and core competence, the MOE can specify the profile of the
prospective students that would fit into the schools’ curriculum. This can be used to rank the
students according to the various criteria listed down by the schools. This eliminates the need
for the schools to submit a ranking list of individual students, thus giving them less scope for
strategic manipulation.

Schools-optimal Mechanism. As in the case of the students-optimal matching mechanism,
the danger of schools manipulating the assignment process can be eliminated by appropriate
management control. Note that even with the schools-optimal mechanism, it is known that
truth-revelation is not a dominant strategy for the schools, and so, proper management control
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is still required to ensure that the schools do not misrepresent their preferences. However, it
is still possible that some of the students will benefit from lying. In the rest of this section,
we examine the extent to which the students benefit by misrepresenting their preferences. We
use the algorithm described in section 2.2 to obtain some insights into this problem.

We designed an experiment with n = 60 students, and k schools each with 60/k places, for
k = 1, 3, 5, 10, 20. The preferences of the schools and the students are generated randomly
in the many-to-one model. We then convert the problem into a one-to-one model, with each
school represented as k individuals in the new model. All individuals corresponding to the
same school will have identical preference lists. Also, for the students in the new model,
the preference list is generated so that the individuals corresponding to the same school are
clustered together in the students’ preference list, capturing the fact that in the many-to-one
model, the students basically provide the preference lists for the schools only. In this new
one-to-one model (where students correspond to women and schools correspond to men), the
preference lists are thus generated in a special manner. We next report the extent to which
the women (i.e., students) can cheat in this new one-to-one model, under the men-optimal
mechanism. Note that the number of women who can benefit from cheating in this case is not
directly equivalent to the number of students who can benefit from cheating in the many-to-
one model, since the one-to-one problem contains artificial strict preferences over slots of the
same school. Nevertheless, the numbers reported consititue an upperbound on the number of
students who can benefit from cheating in the many-to-one model.

For each set of parameters, we ran 1000 experiments. The following table shows the average
number of women who benefited from cheating.

k 1 3 5 10 20

Percentage of women who benefit from cheating 8.77 11.00 11.09 10.22 4.675

The cumulative distribution of the number of women who benefited from cheating is shown
in Figure 3.

For each value of k, the y-axis shows the cumulative number of women who can benefit from
cheating. For instance, for k = 1, in close to 900 out of 1000 experiments, at least one woman
benefits from cheating. Note that in the many-to-one model with only one school, clearly the
students cannot benefit from cheating. This number drops to slightly over 800 for k = 3,
slightly over 700 for k = 5, slightly over 500 for k = 10, and finally to around 200 for k = 20.
Interestingly, the number of times that no women benefit from cheating (i.e. optimal strategy
is for all the women to tell the truth) seems to increase as k increases (From 100 for k = 1
to 800 for k = 20). Translated to the many-to-one model, it indicates that, for instance, in
the case k = 20 (i.e. 20 schools and 60 students), the chances that no students can benefit
from cheating is at least 80%. It indicates that if there are relatively many schools in the
many-to-one model compared to the total number of students, cheating becomes increasingly
impossible.

The simulation experiments also showed a interesting feature: The proportion of women who
can benefit from cheating hovers around 10% for all choices of k, even though the preference lists
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Figure 3: Cheating in Many-to-One model

are generated in a special manner. The numbers are similar to those in the earlier experiment
when the preference lists for the one-to-one model are generated in a random fashion.

5 Concluding Remarks

Our study here focused on two main areas: In the first part, we studied the theoretical aspects
of the stable marriage problem. Specifically, we addressed the strategic issues in the Gale-
Shapley model (i.e., a one-to-one matching model in which each participant submits complete
preference lists)—very little was known about the strategic issues for this model prior to our
work. Assuming that the men-optimal mechanism is used, we derived an optimal cheating
strategy for the women. We also showed that the strategic behavior of the women can be
very different under the models with and without rejection. We saw that in our model, an
optimal cheating strategy for a woman did not always guarantee her women-optimal partner.
Moreover, in sharp contrast to the rejection model, we showed that the chances of a woman
benefitting from cheating are small.

The second part of our study emphasized the importance of adopting stable matching mecha-
nisms in the context of the Singapore Secondary School posting exercise. There is an enormous
amount of literature on the college admissions problem, which sheds light on the viability of
the matching mechanisms we proposed. For instance, a variant of the student-propose mecha-
nism suggested here has recently been recommended to be the official posting method to assign
interns to hospitals in the United States (Roth and Peranson, 1997). The high participation
rate in this interns/hospitals market, despite the fact that participation is voluntary, shows the
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relevance and importance of ensuring stability. For the Singapore posting exercise, however,
participation rate is not the central theme of the problem, since the students do not have a
choice in participation. Interestingly, exploiting this unique feature of the problem (that the
student cannot say “no”), we showed that a stable matching mechanism is still appropriate in
this context. The current assignment process used by the MOE seems to place undue emphasis
on the parents making intelligent, “realistic” choices; this is troublesome for the parents, espe-
cially because they have to make their decisions before their children appear for the primary
school leaving examination. We argued that adopting a stable matching mechanism results in
a better system. We showed further that regardless of the particular stable matching mech-
anism used (the students-optimal or the schools-optimal mechanism), there is no significant
incentive for the students to cheat, under the perfect information scenario. Since the students
have little reason to cheat in the two extremal stable matching mechanisms, it is natural to
suspect that this result carries over to all the “intermediate” stable matchings as well; we leave
this as a challenging problem for future research.

As for the strategic behavior of the schools, the adoption of any stable matching mechanism
would give incentives for some schools to falsify their preferences or even to falsify the number
of places available (see Sonmez 1997 on how the schools can manipulate capacities to obtain a
better match under both students-optimal and schools-optimal mechanisms). In the Singapore
context, however, the latter is relatively unimportant as the schools are tightly regulated by the
government, and the number of places available are determined by the Ministry. Furthermore,
the ranking of the students, according to the schools, is usually done by some broad selection
criteria (e.g. examination results, affiliation, etc.) rather than at an individual level. Hence
the issues of manipulation (both rank and capacity) on the schools’ part is less of a concern in
this context.

To summarize, our analysis of the strategic issues suggests that stable matching mechanisms
can be used to address most of the shortcomings of the current assignment process. In partic-
ular, it can be used to address the key concern of most parents: “How do I choose the schools
if I do not know my child’s standing at the national level?” The answer to that, regardless of
the stable matching mechanism used, is: “Just tell the truth.”
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