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ABSTRACT
We consider matching markets where a centralized author-
ity must find a matching between the agents on one side of
the market, and the items on the other side. Such settings
occur, for example, in mail-based DVD rental services such
as NetFlix or in some job markets. The objective is to find a
popular matching, or a matching that is preferred by a ma-
jority of the agents to any other matching. This concept was
first defined and studied by Abraham et al. The main draw-
back of this concept is that popular matchings sometimes
do not exist. We partially address this issue in this paper,
by proving that in a probabilistic setting where preference
lists are drawn at random and the number of items is more
than the number of agents by a small multiplicative factor,
popular matchings almost surely exist. More precisely, we
prove that there is a threshold α ≈ 1.42 such that if the
number of items divided by the number of agents exceeds
this threshold, then a solution almost always exists. Our
proof uses a characterization result by Abraham et al., and
a number of tools from the theory of random graphs and
phase transitions.

Categories and Subject Descriptors
G.2 [Discrete Mathematics]: Applications

General Terms
Theory, Algorithms, Economics

Keywords
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1. INTRODUCTION
In many centralized real-world markets, the task is to form

a matching between two sides of the market. Examples of
such markets include matchmaking markets (where boys are
matched to girls), job markets such as medical residency
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matching program [13] (where applicants are matched to po-
sitions), mail-based DVD rental systems such as NetFlix [1]
(where available DVDs are matched to the subscribers), and
kidney exchange markets [11] (where patients are matched
to kidneys available for transplant). In such markets, agents
on one or both sides of the market have preferences over
their possible matches. These preferences are often ordinal,
i.e., they only express the relative ranking of the options.
The objective is to find a matching that is “optimal” with
respect to these preferences. This is, however, not a well-
defined goal, since preferences are only ordinal, and there is
no way to compare the utility of one agent with the utility
of another. This has motivated the search for reasonable
solution concepts in this setting.
In cases where both sides of the market have preferences

over the other side, a satisfactory answer to this question,
called stable matching, was proposed by Gale and Shapley
in 1962 [6]. Since then, this concept was used in many ap-
plications such as matching medical students to hospitals or
matching students to high schools in New York City (See [12]
for a list of such applications). One of the most important
properties of stable matchings, proved by Gale and Shap-
ley [6], is that they always exist. This is a vital property for
a solution concept, as in most practical applications having
no solution is simply not an option.
For markets where only one side has preference over the

other, the situation is less satisfactory. Such markets corre-
spond to situations where one side of the market consists of
agents with preferences, and the other side consists of items
that can be allocated to the agents. In cases where there is
an initial assignment of items to the agents (e.g., in some
models of the housing market), there is an algorithm com-
monly known as the top trading cycle algorithm that always
finds a solution with nice properties [14]. This, however,
does not apply to many settings, most notably the NetFlix
setting where DVDs are to be allocated to the subscribers
who don’t initially own any DVDs.
In [2], Abraham et al. proposed a solution for this prob-

lem by defining the notion of popular matchings, and giving
an efficient algorithm that finds a popular matching, if one
exists. Roughly speaking, a popular matching is a matching
that is preferred by a majority of the agents to any other
matching. The main drawback of this notion is that it does
not necessarily exist. In fact, it is easy to see that even a
simple instance with three agents and three items, all hav-
ing the same preference list, does not contain any popular
matching.
In this paper, we partially answer this question by showing
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that in a certain probabilistic model, if the number of items
is larger than the number of agents by a small multiplicative
factor, then almost surely popular matchings exist. More
precisely, we show that there is a threshold α ≈ 1.42, such
that if the number of items is at least α times the number of
agents, then the instance admits a popular matching with
high probability. This is particularly applicable in a setting
like NetFlix, where the number of available DVDs tend to
be considerably larger than the number of subscribers.

Related Work. The notion of popular matchings (a.k.a.
majority assignment) was first introduced by Gardenfors [7]
in the context of stable matchings. Abraham, Irving, Kavitha,
and Mehlhorn [2] introduced this notion for markets with
preferences on one side, and proved several interesting char-
acterization results and gave fast algorithms for finding a
popular matching, even if the preference lists are not strict.
Their characterization result (presented in the next section)
provides the basis for our proof. They also give some exper-
imental results with a probabilistic model similar to ours,
except they only present experiments for the case that the
number of agents is equal to the number of items, and there-
fore their experimental results are mostly negative. Mestre [10]
and Abraham and Kavitha [3] show several generalizations
of the setting and the results of [2]. Abraham, Chen, Ku-
mar, and Mirrokni [1] study and compare several solution
concepts (including popular matching) for the DVD rental
market both in a static and in a dynamic setting.

The rest of this paper is organized as follows. In Section 2,
we present the definitions, and a characterization result from
[2] that will be used in our proof. In Section 3, we prove the
main result of our paper. Section 4 contains a discussion of
various extensions of our results, and some open questions
and future directions.

2. DEFINITIONS AND PRELIMINARIES
Consider a situation where a number of items (e.g., Net-

Flix DVDs, or jobs) must be allocated among n agents. We
denote the set of agents by A and the set of items by B,
and let m = |B|. Throughout this paper we assume m ≥ n.
Each agent can receive at most one item, and each item can
be allocated to at most one agent. In other words, an allo-
cation of the items to the agents is a matching between A
and B.
The preference of each agent a ∈ A is given by an ordered

list pa of a subset of items in B. In general, this order-
ing does not have to be strict, and can express ties between
items. An item i that is not listed on pa is considered unac-
ceptable to a, i.e., a prefers to receive no item than to receive
i. Throughout this paper, we assume that preference lists
are strict and complete, i.e, each list pa is a permutation of
B. We will see in Section 4 that this assumption is only a
simplifying assumption for our positive result.
Consider two matchings M and M ′ between the sets A

and B. If the number of agents in A that prefer their match
inM to their match inM ′ is more than the number of agents
that prefer their match in M ′ to their match in M , we say
that M is more popular than M ′ (denoted by M � M ′). A
matching M is called popular if there is no other matching
that is more popular than M . Notice that the relation �
is not necessarily acyclic; therefore, popular matchings need
not exist in general.

Abraham et al. [2] gave a nice characterization of popular
matchings that will be used in this paper. Here we present
their result in the case that preference lists are all strict and
complete. This characterization is in terms of two functions
f and s defined below. For every agent a, we define f(a) as
the first item on pa. An item i ∈ B is called an f -item if
i = f(a) for some agent a. For every agent a, s(a) is defined
as the first item on a’s list that is not an f -item (notice that
since preference lists are complete and m ≥ n, such an item
always exists). We define a bipartite graph G with agents
in A on one side and items in B on the other side. An agent
a has two edges connecting it to the items f(a) and s(a). A
matching M between A and B is A-perfect if every agent
a ∈ A is matched under M . The following result is proved
in [2].

Theorem A. [2] A matching M is popular if and only if

(i) every f-item is matched in M , and

(ii) M is an A-perfect matching in G.

Corollary A. [2] An instance of the popular matching
problem admits a popular matching if and only if the graph
G defined above has an A-perfect matching.

3. EXISTENCE OF POPULAR MATCHINGS
As we mentioned in the previous section, there are simple

instances that do not admit any popular matching. This is
an unsatisfactory feature of the concept of popular matching
(as opposed to, for example, stable matchings which always
exist). A natural question is whether such instances are
rare, i.e., whether we can expect a random instance of the
popular matching problem to have a solution. In order to
answer this question, we first need to clarify what we mean
by a random instance.
Following previous work on random instances of the stable

marriage problem [9], we consider the following distribution:
Each agent in A picks her preference list pa independently
and uniformly at random from the set of all permutation of
B. In this section, we show that a random instance drawn
from the above distribution almost surely admits a popular
matching if the number of items m is greater than a certain
linear threshold.

Theorem 1. Assume α = α∗ + ε, where ε > 0 and α∗ ≈
1.42 is the solution of the equation x2e−1/x = 1. Then the
probability that a random instance of the popular matching
problem with n agents and m = αn items admits a popular
matching tends to 1 as n tends to infinity.

Proof. By Corollary A, we only need to show that the
probability that the graph G defined in the previous sec-
tion has an A-perfect matching tends to 1. Notice that the
graph G for a random instance can be constructed using the
following procedure: each node a ∈ A independently and
uniformly picks a vertex in B as their first neighbor (this
corresponds to f(a)). Let F denote the set of all vertices
in B that are chosen as the first neighbor of some a ∈ A.
Next, every node in a ∈ A independently picks a uniformly
random vertex in S := B \ F as their second neighbor (this
corresponds to s(a)). It is easy to see that the distribution
of G constructed using the above procedure is exactly the
same as the distribution of G for a random instance of the
popular matching problem.
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We start by proving the following lemma, which provides
an estimate for the size of S. Notice that the random vari-
able X defined in this lemma has exactly the same distribu-
tion as |S|.

Lemma 1. Let m = αn, and define the random vari-
able X by picking n elements of the set {1, . . . ,m} inde-
pendently and uniformly at random and letting X be the
number of elements in this set that are not picked. Then,
E[X] = e−1/αm−Θ(1) and Var[X] < E[X].

Proof. For j ∈ {1, . . . ,m}, let Xj be 1 if and only if j
is not picked in our experiment. Clearly, X =

∑
j Xj . By

linearity of expectations we have

E[X] =
∑

j

E[Xj ] = m.(1− 1

m
)n = (e−1/α −Θ(

1

m
))m.

Furthermore, we can estimate the variance of X using the
following inequality from [4]:

Var[X] ≤ E[X] +
∑
i�=j

Cov[Xi, Xj ]

= E[X] +

(
m

2

) (
(1− 2

m
)n − (1− 1

m
)2n

)

< E[X],

where Cov[Xi, Xj ] := E[XiXj ] − E[Xi]E[Xj ] is the covari-
ance of the variables Xi and Xj . This completes the proof
of the lemma.

We now give a necessary and sufficient condition for the
existence of an A-perfect matching in G in terms of uni-
cyclicity of the components of another random graph G′

defined below. Graph G′ is bipartite with parts F ′ and S′,
with F ′ = B and S′ = S. Corresponding to every vertex
a ∈ A in G, we put one edge ea in G′ between the vertex
corresponding to f(a) in F ′, and the vertex corresponding
to s(a) in S′. We call the parts F ′ and S′ the f-side and the
s-side of the graph, and f(a) and s(a) the f-endpoint and
the s-endpoint of ea, respectively. We claim the following.

Lemma 2. There is an A-perfect matching in G if and
only if every connected component of G′ contains at most
one cycle.

Proof. Assume we are given an A-perfect matching M
in G. For every a ∈ A, we can orient the edge ea of G′

toward the endpoint corresponding toM(a). In this way, we
obtain an orientation of G′ in which every vertex has at most
one incoming edge. Conversely, it is easy to see that every
orientation of G′ that satisfies this property corresponds to
an A-perfect matching in G. Therefore, we only need to
prove that G′ admits such an orientation if and only if every
component of G′ has at most one cycle.
If every connected component of G′ has at most one cycle,

we can orient the edges of G′ as follows: for every component
C of G′, if C contains a cycle, then orient this cycle in one
of the two directions, and orient every other edge of C away
from this cycle. For components C that do not contain any
cycle, we pick an arbitrary vertex and orient all edges away
from this vertex. It is easy to see that in this orientation,
every vertex has at most one incoming edge.
On the other hand, assume G′ has an orientation in which

every vertex has at most one incoming edge, and consider a

connected component C of G′. Since the in-degree of each
vertex in C is at most one, the number of edges in C is at
most the number of vertices in C. This means that C is a
tree plus at most one edge, and therefore contains at most
one cycle.

We now need to bound the probability that G′ contains a
connected component with more than one cycle. Such con-
nected components are often called complex components. It
is well-known [5, 4] that the Erdős-Renyi random graph al-
most surely does not contain any complex component be-
fore the appearance of the giant component. Unfortunately,
the graph G′ is not exactly an Erdős-Renyi random graph.
However, we can use similar techniques with a few additional
tricks to prove our result.
The main difficulty with G′ is that the number of vertices

on its s-side is not fixed, and depends on the outcome of
the random choices. The following lemma gets around this
difficulty, by showing that fixing the number of vertices on
the s-side does not increase the probability of a rare event
defined on the graph G′ significantly. More precisely, we
define the random graph G(a, b,M) as follows: G(a, b,M)
is a bipartite graph, with a vertices in the first part and b
vertices in the second part, and M edges selected indepen-
dently and uniformly at random from the set of all possible
ab edges. Notice that in this definition edges are picked with
replacement, so the graph might contain parallel edges.

Lemma 3. Assume m = αn, and E is an arbitrary event
defined on graphs. If for every fixed integer h ∈ [e−1/αm −
m2/3, e−1/αm + m2/3], the probability of E on the random
graph G(m,h, n) is at most O(1/n), then the probability of

E on G′ is at most O(n−1/3).

Proof. Let us denote the probability of E on the random
graphs G′ and G(a, b,M) by PrG′ [E] and PrG(a,b,M)[E], re-
spectively. We sometimes drop the subscript if it is clear
from the context which random graph the probability is
taken over. By definition, for every fixed value of h, the
distribution of G′, conditioned on |S′| = h is exactly the
same as the distribution of G(m,h, n) conditioned on hav-
ing exactly h isolated vertices (i.e., zero-degree vertices) in
the first part of this graph (i.e., the part with m vertices).
Let us denote the number of isolated vertices in the first
part of G(m,h, n) by s(G(m,h, n)). Therefore, by the above
statement, we have

PrG′ [E] =
∑

h

PrG′ [E | |S′| = h] · PrG′ [|S′| = h] (1)

=
∑

h

PrG(m,h,n)[E | s(G(m,h, n)) = h] · Pr[X = h],

where X is the random variable defined in Lemma 1. By
the Bayes rule and the fact that s(m,h, n) has the same
distribution as X, we have

Pr[E|s(G(m,h, n)) = h] = (2)

Pr[s(G(m,h, n)) = h|E] · PrG(m,h,n)[E]

Pr[X = h]
.

Let I denote the interval [E[X]− δ,E[X] + δ] for a value of
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δ that will be fixed later. Equations 1 and 2 together imply

PrG′ [E] ≤ Pr[|X − E[X]| > δ] + (3)∑
h∈I

Pr[s(G(m,h, n)) = h|E] · PrG(m,h,n)[E]

By the Chebyschev’s inequality, the first term in the right-
hand side of the above inequality is at most Var[X]δ−2. In
the second term, we bound Pr[s(G(m,h, n)) = h|E] by 1.
Therefore, we obtain

PrG′ [E] ≤ Var[X]

δ2
+

∑
h∈I

PrG(m,h,n)[E]

≤ E[X]

δ2
+ 2δmax

h∈I
PrG(m,h,n)[E] (4)

Now, we set δ = 1
2
m2/3. By Lemma 1, the interval I is

contained in [e−1/αm − m2/3, e−1/αm + m2/3]. Therefore,
maxh∈I PrG(m,h,n)[E] = O(1/n). Thus,

PrG′ [E] ≤ O(m)

m4/3
+m2/3 ·O( 1

n
) = O(n−1/3),

as desired.

Given the above lemma, we only need to show that the
graph G(m,h, n) almost surely does not contain any com-
plex components. This graph is essentially a bipartite vari-
ant of the Erdős-Renyi graph G(n,M) [5, 4], and we can use
similar techniques to prove our result.

Lemma 4. Let m = αn, and h be an arbitrary number in
the interval [e−1/αm−m2/3, e−1/αm+m2/3]. Then the prob-
ability that the random graph G(m,h, n) contains a complex
component (i.e., a component with more than one cycle) is
at most O(1/n).

Proof. Let X and Y be subsets of the vertices of the
first and the second part of the graph G(m,h, n), respec-
tively. We define an event BADX,Y that indicates that the
subgraph of G(m,h, n) induced by the vertices X ∪ Y con-
tains one of the following graphs as a spanning subgraph:
(i) two vertices joined by three disjoint paths (ii) two dis-
joint cycles joined by a path disjoint from the two cycles.
We call these subgraphs bad subgraphs. Notice that every
graph that contains a complex component must contain a
bad subgraph.
We prove that with high probability none of the events

BADX,Y happen. Fix X and Y , and denote k1 = |X|,
k2 = |Y |, and k = k1 + k2. Notice that if |k1 − k2| > 1, then
the graph induced by X ∪ Y cannot contain any of the bad
subgraphs as a spanning subgraph. Thus, we may assume
that k1, k2 ≥ (k − 1)/2.
It is easy to see that the number of non-isomorphic bad

graphs with k1 vertices in the first part and k2 vertices in the
second part is at most 2k2, and for each such graph there are
k1!× k2! ways to “put” this graph on the vertex set X ∪ Y .
The probability that all k + 1 edges of this subgraph are
picked in our procedure is at most

(k + 1)!

(
n

k + 1

) (
1

mh

)k+1

Therefore, the probability of BADX,Y can be bounded using

the union bound by

2k2k1!k2!(k+1)!

(
n

k + 1

) (
1

mh

)k+1

≤ 2k2k1!k2!
( n

mh

)k+1

.

By the union bound, the probability that at least one of
the events BADX,Y happens is at most

Pr[
∨
X,Y

BADX,Y ] ≤
∑

k1,k2

(
m

k1

)(
h

k2

)
2k2k1!k2!

( n

mh

)k+1

≤
∑

k1,k2

mk1

k1!
× hk2

k2!
× 2k2k1!k2!

(
1

αh

)k+1

=
∑

k1,k2

2k2

h
· α−(k+1)

(m
h

)k1

≤
∞∑

k=1

O(k2)

n
· α−k

(
e−1/α −m−1/3

)−k/2

=
O(1)

n

∞∑
k=1

k2(α2(e−1/α −m−1/3))−k/2.

By the assumption α > α∗, if n is large enough, we have
α2(e−1/α −m−1/3) > 1, and therefore the above sum con-
verges. Thus, the probability that at least one of the events
BADX,Y happens is at most O(1/n).

The above lemma together with Lemmas 2 and 3 show
that the probability that a random instance of the popular
matching problem admits a popular matching is at least
1−O(n−1/3) = 1− o(1).

4. DISCUSSION
In this paper we showed that in a probabilistic model, if

the number of items is more than the number of agents by
a small factor, then popular matchings almost surely exist.
In our probabilistic model, every agent has a complete and
strict preference list, drawn independently and uniformly
at random. This raises several questions, some of which
addressed below, and some posed as open questions.

Tightness. Using the tools developed in the previous sec-
tion and standard techniques used to prove the emergence
of a giant component in random graph theory [5, 4], we can
prove that if the ratio m/n is bounded by a constant smaller
than 1.42, then almost surely the instance does not contain
a popular matching. In other words, there is a phase tran-
sition at α = α∗. The proof is long, and is not included
in this paper, but the sketch of the proof is as follows: we
use Lemmas 2 and 3 to reduce the problem to analyzing the
probability that G(m,h, n) does not have any complex com-
ponent (notice that this time we need to define the event E
in Lemma 3 as not having a complex component). Then, we
show that for a small enough δ, with high probability, the
graph G(m,h, (1− δ)n) contains a giant component. This is
done by approximating the breath-first search tree starting
from an arbitrary vertex of G(m,h, (1 − δ)n) with a Pois-
son branching process, similar to the argument used to show
the emergence of the giant component in the Erdős-Renyi
graph. Finally, we observe that with high probability, at
least two of the remaining δn edges will land in the giant
component, thereby creating a complex component.
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Dealing with ties. In our model we assumed that there is
no tie in the preference list of the agents. The main reason
behind this assumption was that there is no clean proba-
bilistic model with ties. Our model is an accurate model in
some settings (e.g., in NetFlix the system does not allow the
subscribers to express ties in their preferences), but not in
others. However, intuitively ties make the task of finding a
popular matching easier. More precisely, if we resolve the
ties in all preference lists in an arbitrary way, we obtain an
instance without any ties, and every popular matching for
this instance is also a popular matching for the original in-
stance. Therefore, our result extends to any model with ties
in which there is a way to break the ties so that the resulting
distribution is close to our distribution. In particular, this
includes the probabilistic model introduced by Abraham et
al. [2]. On the other hand, it might be (and intuitively it
should be) possible to improve the threshold α∗ for models
with ties. This is confirmed by experimental result in [2],
where it is suggested that if there are enough ties, even an
instance with m = n has a reasonable probability of con-
taining a popular matching.

Short lists. We assumed in our model that the agents have
complete preference lists. This is far from being realistic in
most applications. However, it is not hard to see that re-
stricting the lengths of the preference lists in any instance
only increases the likelihood that the instance contains a
popular matching (this statement is easy to prove using the
characterization result of [2]). Again, one might ask if re-
stricting the lengths of the preference lists can improve the
threshold α∗. Our conjecture is that restricting the length
of all preference lists to k in our model can only improve the
threshold by an amount exponentially small in k. The intu-
itive reason for this is that for each agent a, the probability
that a cannot find an s(a) on its list is exponentially small
in k.

Incentive compatibility. One important issue in real-
world markets is the issue of incentive compatibility. For
example, do users of NetFlix have an incentive to reveal
their true preferences? Some argue that in many such sys-
tems it is beneficial not to disclose some of the options that
are lower on one’s preference list, since if such options are
disclosed, there is a chance that the system selects one of
the inferior options and this might decrease the chance of
getting the top options. Such situations are not desirable
from a game theoretic point of view. Therefore, a natural
question is whether a mechanism that always computes a
popular matching is incentive compatible. This is an inter-
esting open question. A similar question for stable match-
ings was solved by Immorlica and Mahdian [8]. We don’t
know if similar techniques can solve the incentive compati-
bility question for popular matchings.

Other solution concepts. Popular matching is not the
only solution concept proposed for matching markets with
one-sided preferences. For example, another solution con-
cept is rank-maximal matching, which is a matching that
maximizes the number of agents who receive their first choice,
and then (subject to the first maximization) the number of
agents who receive their second choice, and so on. Analyz-
ing various other solution concepts from the point of view
of performance and incentive compatibility is an interesting
open direction. A first step in this direction is the recent pa-
per by Abraham et al. [1] which studies the performance of

several solution concepts both in static (i.e., one-shot) and
dynamic (i.e., repeated) scenarios.
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