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ON THE STABLE MATCHINGS THAT CAN BE REACHED WHEN
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Abstract. The random order mechanism (ROM) can be thought of as a sequential version of
Gale and Shapley’s deferred-acceptance (DA) algorithm, where agents are arriving one at a time,
and each newly arrived agent has an opportunity to propose. Like the DA algorithm, ROM can
be implemented in polynomial time. Unlike the DA algorithm, it is possible for ROM to output a
stable matching that is different from the man-optimal and woman-optimal stable matchings. We
say that a stable matching µ is ROM-reachable if ROM can output µ. In this paper, we investigate
computational questions related to ROM-reachability. First, we prove that determining if a partic-
ular stable matching is ROM-reachable is NP-complete. However, we show that there is an efficient
algorithm for determining if ROM can reach a nontrivial stable matching in the case when every
agent has at least two stable partners. We then study two restricted versions of this problem. In the
first version, we consider stable matchings that can be reached by ROM in a “direct” manner. We
show that they are computationally easy to recognize. In the second version, we restrict the class
of stable matchings to what we call extreme stable matchings and prove that the computational
complexity of determining if they are ROM-reachable depends on the number of unstable partners
of the agents.
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1. Introduction. Since Gale and Shapley’s seminal publication [10] on stable
matchings, economists, mathematicians and computer scientists alike have flocked
into the field. The subject is rich and deep—four books [14, 11, 20, 16] and hundreds,
if not thousands, of papers on stable matchings have been published. As a solution
concept, it is also widely used in practice—many centralized matching markets such
as those for NRMP [19], the Boston Public School Match [2], and the New York City
High School Match, etc. [1]1, aim to match agents from two sides of the market in a
stable way.

Our initial interest in stable matchings, however, had a more mundane reason. We
simply found Gale and Shapley’s deferred-acceptance (DA) algorithm to be a lot of
fun. Our students share this enthusiasm whenever we have lectured on this topic. The
reason it seems is how the agents behave in the algorithm. Their actions more or less
capture what most people do in practice. An “active” agent (classically a “man”) will
initiate offers starting with the person from the other group that he prefers the most.
A “passive” agent (classically a “woman”), on the other hand, will just wait for offers
but will still act in a self-interested way. The students are taken aback though when
they learn that the DA algorithm can only produce two kinds of stable matchings—the
man-optimal/woman-pessimal and woman-optimal/man-pessimal stable matchings—
even when an instance has an exponential number of stable matchings. In a few of
these occasions, they have asked if there are other algorithms where both men and
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2048 CHRISTINE T. CHENG

women can make proposals, and whether such an algorithm might output a stable
matching that is less biased toward one side of the matching. The answer to their
question turns out to be “yes,” and determining the stable matchings the algorithm
can reach is the subject of our investigation.

Ma proposed the random order mechanism (ROM) in 1996 [15] as a variant to
Roth and Vande Vate’s [21] work on random paths to stability. It works as follows:
Let π be an ordering of the agents chosen uniformly at random. Think of the agents
as arriving in a room (or a market) one at a time. In between arrivals, the room is
closed so that a stable matching can be found for the agents in the room. The initial
stable matching μ0 is empty. Let μi−1 denote the stable matching obtained prior to
the arrival of π(i). When π(i) enters the room, μi−1 may or may no longer be a stable
matching of the instance consisting of the i agents in the room. If the former is true,
μi is just μi−1; if the latter is true, π(i) must form a blocking pair with one of the
agents in the room. Resolve this in a best response manner. That is, among all the
agents with which π(i) forms a blocking pair, π(i) is matched to the agent she prefers
the most, say, a. Now if a had a partner in μi−1, this partner is now unmatched
and may create new blocking pairs. Let him resolve in a best response manner again.
This process is repeated until a stable matching is obtained. Set μi to be this stable
matching. The final stable matching, μ|π|, formed after all the agents have arrived
must then be a stable matching of the original instance.

We note that the step of determining if some agent b is part of some blocking
pair of an existing matching μ and then resolving it in a best response manner can
be simulated by a procedure that is reminiscent of the DA algorithm: b goes through
her preference list and proposes to those who are currently in the market starting
with the agent she prefers the most. The first agent to accept her proposal forms
a blocking pair with b and is the agent that b prefers the most among all those
that form a blocking pair with her. If no agent accepts her proposal, the current
matching is stable. We have been referring to π(i) as a woman but π(i) can be a
man too. Hence, we can think of ROM as a sequential version of the DA algorithm
where agents from both sides of the market have an opportunity to propose. Like
the DA algorithm, ROM can also be implemented in polynomial time. Unlike the
DA algorithm, it is possible for ROM to output a stable matching different from
the man-optimal and woman-optimal stable matchings. Ma [15] used an example of
Knuth’s to show that ROM can produce six out of the ten stable matchings of the
instance.

Let us say that a stable matching μ is reachable by ROM or ROM-reachable if there
is an ordering π of the agents so that when ROM processes π, the output is μ. One of
the most useful properties of ROM-reachable stable matchings is due to Cechlárová
[9] and Blum, Roth, and Rothblum [8]. It states that every ROM-reachable stable
matching must have at least one agent matched to their best stable partner. Other
properties can be also found in [8] and [7]; nonetheless, a nice characterization of
ROM-reachable stable matchings is still missing. In this paper, our goal is to address
computational questions about ROM-reachability.

Our results. Let I be an instance with n agents, and let us refer to a stable
matching of I as nontrivial if it is different from the man-optimal and woman-optimal
stable matchings. First, we ask a basic question—given a nontrivial stable matching
μ of I, is μ ROM-reachable? We prove that the problem is NP-complete, even in the
case when every agent has a preference list of length at most 4. Our result answers an
open problem in [16]. In our reduction, the stable matching of interest, μ, has many
disjoint submatchings where no agent is matched to their best stable partner. To
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ON THE STABLE MATCHINGS THAT CAN BE REACHED 2049

reach these submatchings, ROM has to first form submatchings that are not part of μ
and then use them as stepping stones to reach the said submatchings. It is this two-
step process that makes the problem difficult because the intermediate submatchings
are intertwined with each other.

But suppose we simplify the problem and just ask if ROM can reach a nontrivial
stable matching of I. We show that the problem can be answered in polynomial time
provided every agent of I has at least two stable partners. All we have to do is run at
most n permutations on ROM. If ROM can reach a nontrivial stable matching, then
one of these runs will also output a nontrivial stable matching of I.

Next, we say that a stable matching μ is strongly ROM-reachable if there is some
input permutation π of I’s agents so that the output of ROM is μ, and μ1 ⊆ μ2 ⊆
· · · ⊆ μ|π| = μ. That is, once a pair of agents is part of a μi, it is part of the remaining
stable matchings until ROM ends. Anecdotally, many of the ROM-reachable stable
matchings we have found are also strongly ROM-reachable. In the third part of our
paper, we characterize the strongly ROM-reachable stable matchings using directed
graphs. We then present an efficient algorithm that recognizes these kinds of stable
matchings. Our characterization makes use of subgraphs of jealousy graphs defined
recently by Hoffman, Moeller, and Paturi [12] to obtain more refined bounds for the
convergence time of random better response dynamics. It is interesting that jealousy
graphs are also relevant to ROM.

Finally, we consider a class of stable matchings we call extreme stable matchings.
They are the stable matchings where every pair has one agent matched to his/her
best stable partner and the other to his/her worst stable partner. Unlike the stable
matching of interest in our first NP-completeness reduction, these stable matchings do
not have submatchings that lie in the “middle.” We show that when each agent has
at most one unstable partner in I (i.e., the agent and the unstable partner are never
matched in a stable matching of I), every extreme stable matching of I is strongly
ROM-reachable. However, there is an instance where some agents have two unstable
partners, and this instance has an extreme stable matching that is not reachable by
ROM. Using this instance as a gadget, we then prove that when agents have two
or more unstable partners, determining if an extreme stable matching of I is ROM-
reachable is NP-complete. These results are highly unusual in that we know of no
computational problems on stable matchings where the unstable pairs of the instance
determine the complexity of the problem.

Related work. We have presented ROM as a sequential version of the DA
algorithm where the starting matching is the empty matching and agents from both
sides of the matching are allowed to propose. Ma [15] also allowed ROM to start at
an arbitrary matching. He based ROM on Roth and Vande Vate’s proof [21] that the
random better response dynamics converges to a stable matching with probability 1.
Interestingly, ROM is quite different from the random better response dynamics in
at least two ways. First, starting with an empty matching, the latter can reach every
stable matching of an instance [21]. Such a property does not hold for ROM. Second,
there are instances where the random better response dynamics can take exponential
time to converge to a stable matching [3]. In contrast, ROM always reaches a stable
matching in a polynomial number of steps.

In [8], Blum, Roth, and Rothblum sought to model the dynamics of senior-level
labor markets (e.g., head football coaches of US college teams, etc.). Assume a stable
matching already exists for the firms and workers in the market. Then some workers
retire and some firms open up new positions. Blocking pairs involving unmatched
firms can now exist. The paper studied how the market can restabilize itself using the
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2050 CHRISTINE T. CHENG

DA algorithm. Their results describe how stable matchings change from one iteration
of ROM to the next. Biro, Cechlárová, and Fleiner [7] extended their work to the
stable roommates setting.

Other probabilistic mechanisms for generating stable matchings have been studied
in the past (see [3, 16] and references therein). Perhaps the one that is most simi-
lar to ROM is employment by lotto (EBL) by Aldershof, Carducci, and Lorenc [4],
which is just the random serial dictatorship (RSD) applied to the stable matchings
setting. Like ROM, the input of EBL is a random permutation π of the agents.
Initially, S0 consists of all the stable matchings of the instance. In the ith itera-
tion, Si is reduced to the set of stable matchings where π(i) is matched to his/her
best stable partner in Si−1. The algorithm ends when all the agents in π have
been processed and outputs S|π|. The recent work by Aziz, Brandt, and Brill [5]
on RSD in the one-sided matching setting imply that there is an efficient algorithm
for determining if a particular stable matching can be reached by EBL. What is
computationally hard is determining the probabilities induced by EBL on the stable
matchings.

Last, many researchers have proposed different notions of “fair” stable matchings.
Klaus and Klijn [13] argued that while both ROM and EBL do not guarantee end-
state fairness (i.e., they may not output the stable matchings of the instance with
equal probability), they are procedurally fair because “the sequence of moves for the
agents is drawn uniformly at random.”

2. Preliminaries. Stable marriage with incomplete lists (SMI) instances model
two-sided matching markets. One side consists of “men,” the other of “women.” Each
agent has a preference list that ranks members from the opposite group the agent has
deemed acceptable in a linear order. A pair (m,w) is acceptable if m and w appear in
each other’s preference lists. A matching μ is a set of acceptable man-woman pairs so
that every agent is part of at most one pair. The matching has a blocking pair (m,w)
if (i) m is unmatched or m prefers w to his partner in μ and (ii) w is unmatched or w
prefers m to her partner in μ. A goal in two-sided matching markets is to find stable
matchings, which are matchings with no blocking pairs, because the agents are less
likely to break their assignments.

Throughout this paper, we will assume that in every SMI instance I, an agent a
is in another agent b’s preference list if and only if b is in a’s preference list. The two
agents are stable partners if they are matched to each other in some stable matching
of I; otherwise, they are unstable partners. Additionally, b is a’s best (worst) stable
partner if among all of his/her stable partners b is his/her most (least) preferred one.
Gale and Shapley [10] showed that when it is the men who propose in their algorithm,
the result is the man-optimal/woman-pessimal stable matching—that is, every man is
matched to his best stable partner and simultaneously every woman is matched to her
worst stable partner. On the other hand, when the women are the ones who propose
in their algorithm, the output is the woman-optimal/man-pessimal stable matching
which is defined similarly. A simple corollary of this result is that when b is a’s best
stable partner, a is b’s worst stable partner.

Since the number of men and the number of women in I need not be the same,
some agents may be unmatched in a stable matching of I. The rural hospitals theorem
[18] states that when an agent is unmatched in one stable matching of I, the agent
will be unmatched in all stable matchings of I. Thus, the set of matched agents is the
same for all stable matchings of I. The set can be easily determined by computing
the man-optimal stable matching of I.
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ON THE STABLE MATCHINGS THAT CAN BE REACHED 2051

Below is the pseudocode for Ma’s ROM [15]. Let I consist of n agents. When S
is a subset of I’s agents, we use I|S to denote the SMI instance obtained by restricting
I to the agents in S. We say that a is a blocking agent of a matching μi of I|S if it is
part of a blocking pair of μi. We also say that b is the best blocking partner of a if b
is the one that a prefers the most among all agents that form a blocking pair with a.
Let π be a permutation of I’s agents chosen uniformly at random.

ROM(π, I)
S ← ∅, μ0 ← ∅
for i = 1 to n

ai ← π(i), S ← S ∪ {ai}
μi ← μi−1

while ai is a blocking agent of μi with respect to instance I|S
let bj be the best blocking partner of ai
az ← ai
if bj is matched in μi

let ai now denote the partner of bj
μi ← μi − {(ai, bj)}

μi ← μi ∪ {(az, bj)}
return μn

Fact 1 (see [21, 16]). ROM(π, I) always terminates and outputs a stable match-
ing of I.

The while loop runs in O(|I|) time, where |I| is the size of instance I, so ROM(π, I)
runs in O(n|I|) time. Let us call a stable matching μ of I reachable by ROM or ROM-
reachable if there is some permutation π of its agents so that μ is the output of
ROM(π, I). Ma noted that if π consists of all the women first followed by all the
men, the output of ROM is the man-optimal stable matching of I; similarly, if π
consists of all the men first followed by all the women, the output of ROM is the
woman-optimal stable matching of I. Unlike Gale and Shapley’s algorithm, however,
ROM can in some cases output stable matchings different from the man-optimal and
woman-optimal stable matchings. For example, Ma presented an SMI instance that
had 10 stable matchings, six of which are reachable by ROM. Several researchers have
derived necessary conditions for a stable matching to be ROM-reachable. Here are
some of them.

Fact 2 (Cechlárová [9], Blum, Roth, and Rothblum [8]). Suppose SMI instance
I has n agents, and π is an ordering of I’s agents.

(i) Let π(n) = a. Then a is matched to his/her best stable partner in μn, the
output of ROM(π, I).

(ii) Let b �= a. If the partner of b in μn−1 is one of his/her stable partners in I,
then b will remain matched to this partner in μn. Otherwise, b is matched to
his/her best stable partner in μn if b has the same gender as a and to his/her
worst stable partner in μn if b has the opposite gender as a.

3. ROM-reachability is NP-complete. In this section, we prove the NP-
completeness of ROM-reachability: Given a stable matching μ of instance I, is there a
permutation π of I’s agents so that when ROM processes π, the output is μ? Consider
the SMI instance I∗ below. The men are mi and ai1, ai2, i = 1, 2, 3 while the women
are wi and bi1, bi2, i = 1, 2, 3.
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m1: w1 w2 b11 w3

m2: w2 w3 b21 w1

m3: w3 w1 b31 w2

a11: b11 b12
a12: b12 b11
a21: b21 b22
a22: b22 b21
a31: b31 b32
a32: b32 b31

w1: m2 m3 m1

w2: m3 m1 m2

w3: m1 m2 m3

b11: a12 a11 m1

b12: a11 a12
b21: a22 a21 m2

b22: a11 a12
b31: a32 a31 m3

b32: a31 a32

Let α1 = {(m1, w1), (m2, w2), (m3, w3)}, α2 = {(m1, w2), (m2, w3), (m3, w1)}, α3 =
{(m1, w3), (m2, w1), (m3, w2)}. Notice that α1, α2, α3 are exactly the stable match-
ings of the subinstance of I∗ when restricted to the agents mi’s and wi’s. Both α1

and α3 are ROM-reachable stable matchings of this subinstance because they are the
man-optimal and woman-optimal stable matchings, respectively. However, α2 is not
ROM-reachable for this subinstance since none of the mi’s nor the wi’s are matched
to their best stable partners in the subinstance.

For j = 1, 2, 3, let βj1 = {(aj1, bj1), (aj2, bj2)} and βj2 = {(aj1, bj2), (aj2, bj1)}.
Notice also that βj1 and βj2 are exactly the stable matchings of the subinstance of I∗

when restricted to aj1, aj2, bj1, bj2. It is easy to check that the stable matchings of I∗

are exactly of the form αi∪β1k1∪β2k2∪β3k3 , where i ∈ {1, 2, 3} and k1, k2, k3 ∈ {1, 2}.
Of interest to us is the stable matching μ∗ = α2 ∪ β12 ∪ β22 ∪ β32.

Proposition 1. When π = m1,m2,m3, w1, w2, w3, b11, a11, a12, b12, b21, a21, a22,
b22, b31, a31, a32, b32, ROM(π, I) outputs μ∗.

Lemma 1. Let π be a permutation of the participants of I∗. Suppose ROM(π, I∗)
outputs μ∗. Then the following must be true:

(i) For j = 1, 2, 3, among aj1, aj2, bj1, and bj2, the last agent to appear in π is
bj1 or bj2.

(ii) There must be some j ∈ {1, 2, 3} so that bj1 appears first and bj2 appears last
in the ordering of aj1, aj2, bj1, and bj2 in π.

Proof. To prove (i), among aj1, aj2, bj1, and bj2, let c be the last agent to appear
in π. Let μ′ be the stable matching prior to ROM processing c. Suppose c = aj1. If
bj2 is unmatched in μ′, {aj2, bj2} is a blocking pair of μ′. Since the only person bj2 can
be matched to is aj2, (aj2, bj2) must belong to μ′. Consequently, either (mj , bj1) ∈ μ′

or bj1 is unmatched in μ′. When ROM finally processes aj1, he will get matched to
bj1 so that βj1 is part of the stable matching at the end of this iteration. Since none
of the remaining agents after aj1 in π can form a blocking pair with aj1, aj2, bj1,
and bj2 when the latter are matched according to βj1, βj1 will be a submatching of
the output of ROM. This contradicts our assumption that ROM(π, I∗)’s output is μ∗.
Thus, c �= aj1. The same reasoning applies as to why c �= aj2 so c = bj1 or bj2.

To prove (ii), first we note that during the execution of ROM(π, I∗) there must
be a step where some mj is temporarily matched to bj1 even though the two may not
be matched to each other in the stable matching for that iteration. Otherwise, let π′

be the permutation obtained from π by removing the ajk’s and bjk’s. Let I ′ be the
instance obtained from I∗ by removing the same set of agents. Then it must be the
case that ROM(π′, I ′) can simulate how ROM(π, I∗) matched the agents in I ′ so that
the output of ROM(π′, I ′) is a submatching of ROM(π, I∗). But the former will only
output α1 or α3 and therefore μ∗ cannot be the output of ROM(π, I∗). Since this is
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ON THE STABLE MATCHINGS THAT CAN BE REACHED 2053

a contradiction, some mj must be temporarily matched to bj1 during the execution
of ROM(π, I∗).

Now, consider an arbitrary bj1. If it appears second or third in the ordering of
aj1, aj2, bj1, and bj2 in π, bj2 must appear last in the ordering because of (i). Thus,
either aj1 or aj2 appears first. When ROM begins to process bj1, at least one of these
men will be matched to bj1 immediately so bj1 will never be temporarily matched to
mj in this iteration. In the later iterations, bj1 may change her partner from aj1 to
aj2 but other than this change bj1 will never be matched to any one else.

Suppose bj1 appears last in the ordering of aj1, aj2, bj1, and bj2 in π. Using the
same reasoning in the first paragraph, (aj1, bj2) will be part of the stable matching
just before ROM processes bj1 while aj2 is unmatched. Thus, when ROM processes
bj1, she will be immediately matched to aj2 and βj2 will be the resulting submatching
until the end of ROM. Throughout the execution of ROM, bj1 will never be matched
to anyone else.

Thus, the only way for bj1 to be temporarily matched to mj is for her to appear
first in the ordering of aj1, aj2, bj1, bj2 in π and consequently for bj2 to appear last
because of (i). Since this must be true for some bj1, (ii) follows.

Now consider an arbitrary 3-SAT instance Φ with n variables x1, x2, . . . , xn and q
clauses C1, C2, . . . , Cq. Our goal is to construct an SMI instance IΦ so that a particular
stable matching of IΦ is reachable by ROM if and only if Φ is satisfiable. For each
variable xj , create the subinstance

aj1: bj1 bj2
aj2: bj2 bj1

bj1: aj2 aj1 · · ·
bj2: aj1 aj2 · · ·

where the dots indicate that bj1 and bj2 may have more agents in their preference
lists. Let us call bj1 and bj2 twins and aj1 and aj2 the counterparts of bj1 and bj2.
For each clause Ci, create the subinstance

mi1: wi1 wi2 zi1 wi3

mi2: wi2 wi3 zi2 wi1

mi3: wi3 wi1 zi3 wi2

wi1: mi2 mi3 mi1

wi2: mi3 mi1 mi2

wi3: mi1 mi2 mi3

where zik, k = 1, 2, 3, is based on the kth literal in Cj . If this literal is xj , set zik to
bj1 and add mik to the end of bj1’s preference list; otherwise, if the literal is xj , set zik
to bj2 and add mik to the end of bj2’s preference list. Thus, when we restrict IΦ to the
participants associated with Cj and its variables, the subinstance looks just like the
instance I∗ we considered with the exception that bj2 may sometimes play the role
of bj1 and vice versa. For i = 1, . . . , q, let αi1 = {(mi1, wi1), (mi2, wi2), (mi3, wi3)},
αi2 = {(mi1, wi2), (mi2, wi3), (mi3, wi1)}, αi3 = {(mi1, wi3), (mi2, wi1), (mi3, wi2)}.
Define βj1 and βj2 as before for j = 1, . . . , n. Again, it is straightforward to verify
that the stable matchings of IΦ are exactly of the form α1g1 ∪α2g2 ∪· · ·∪αqgq ∪β1k1 ∪
β2k2 ∪ · · · ∪ βnkn , where each gi ∈ {1, 2, 3} and each kj ∈ {1, 2}.

Let μ∗∗ = α12 ∪ α22 ∪ · · · ∪ αq2 ∪ β12 ∪ β22 ∪ · · · ∪ βn2. When we restrict μ∗∗

to the agents associated with clause Cj and its literals, μ∗∗ is just like μ∗. It is,
however, much trickier for ROM to reach μ∗∗ because bj1 and bj2 can be part of other
subinstances. The two women cannot simultaneously help obtain their subinstances’
“middle” stable matchings since one of them has to appear last in the ordering of
aj1, aj2, bj1, bj2. We are now ready to prove our main result.

Theorem 1. The 3-SAT instance Φ has a satisfying assignment if and only if
there is a permutation π of IΦ’s agents so that the output of ROM(π, IΦ) is μ∗∗.
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Proof. Let f be a satisfying assignment of Φ. We now order the agents of
IΦ based on f . Initially set πf to the empty sequence. For i = 1 to q, add
mi1,mi2,mi3, wi1, wi2, wi3 to the end of πf . We call this the first part of the se-
quence. Next, for j = 1 to n, if f(xj) = 1, add bj1 to the end of πf ; otherwise add
bj2 to the end of πf . We call this the second part of the sequence. Finally, for j = 1
to n, if f(xj) = 1, add aj1, aj2, bj2 to the end of πf ; otherwise, add aj1, aj2, bj1 to the
end of πf . We call this the third part of the sequence.

Now consider what happens in ROM(πf , IΦ). After ROM processes the first
part of πf , the resulting stable matching is α13 ∪ α23 ∪ · · · ∪ αq3. Next, ROM pro-
cesses the second part of πf . Suppose bj1 is one of the women in this sequence. Let
Ci1 , Ci2 , . . . , Cir be the clauses that have xj as a literal. Without loss of generality,
assume that xj is their first literal so that mi11,mi21, . . . ,mir1 appear after aj2 and
aj1 in bj1’s preference list. Consider the beginning of the iteration that processes bj1.
There are two possible cases:

(1) αi13 is part of the current stable matching. Then {mi11, bj1} is a blocking
pair of αi13. As a result, mi11 rejects wi13, and wi13 will in turn propose to
her second choice who then accepts her proposal. Blocking pairs will continue
to get resolved until αi12 replaces αi13 as a submatching of the current stable
matching and bj1 is unmatched.

(2) αi13 is not part of the current stable matching. This implies that in a prior
iteration, case (1) happened (via the agent associated with the second or
third literal of Ci1) and αi12 already replaced αi13 as a submatching. Since
none of the women in the second part of πf can form a blocking pair with
the agents in αi12, αi12 is still a submatching of the current stable matching.
Furthermore, bj1 will just skip over mi11 and remain unmatched.

Thus, after bj1 considers mi11, αi12 is a submatching of the current stable match-
ing and bj1 is unmatched. Similar results apply as bj1 considers mi21, . . . ,mir1 so that
at the end of the iteration that processes bj1, αi2 has replaced αi3 for all clauses Ci

that have xj as a literal. Additionally, bj1 is unmatched.
When bj2 instead of bj1 is in the second part of the sequence, αi2 will replace αi3

for all clauses Ci that have xj as a literal at the end of the iteration that processes bj2.
Additionally, bj2 is unmatched. Hence, once ROM processes the second part of πf , the
resulting stable matching is α12 ∪α22 ∪ · · · ∪αm2 because f is a satisfying assignment
of Φ. All of the women that appears in the second part of πf are unmatched.

Finally, after ROM processes the third part of πf , it is easy to see that β12∪· · ·βn2

becomes part of the output. Moreover, α12∪α22∪· · ·∪αq2 remains unchanged because
none of the agents in the third part of πf forms a blocking pair with the agents of
this submatching. We have shown that μ∗∗ is the output of ROM(πf , IΦ).

We prove the converse next. Suppose ROM(π, IΦ) outputs μ
∗∗. When we restrict

IΦ to the agents associated with Ci and its variables, the instance is just like our
first example I. Similarly, when we restrict μ∗∗ to the same set of agents, the stable
matching looks just like μ∗ of I. Thus, a result like Lemma 1 should apply to the
ordering of the agents in π. We restate part (ii) as follows:

(ii′) For i = 1, . . . , q, there is some k ∈ {1, 2, 3} so that zik appears first and her
twin appears last in the ordering of zik, her twin, and their counterparts in π.

We now construct a truth assignment fπ as follows: for j = 1, . . . , n, set fπ(xj)
to 0 if bj1 is the last agent to appear in π among aj1, aj2, bj1, bj2; otherwise set fπ(xj)
to 1. We know from (i) that when fπ(xj) is set to 1, bj2 is the last agent to appear
in π among aj1, aj2, bj1, bj2. Additionally, from (ii′), we know that fπ has set one of
the literals in Ci to 1 for i = 1, . . . , q. Thus, fπ is a satisfying assignment for Φ.
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Corollary 1. ROM-reachability is NP-complete even in the restricted case when
all agents have a preference list of length at most 4.

Proof. Given 3-SAT instance Φ with n variables and q clauses, we created an
instance IΦ that has 4n+ 6q agents so that Φ is satisfiable if and only if a particular
stable matching of IΦ is reachable by ROM. Thus, 3-SAT is polynomially reducible to
ROM-reachability. Additionally, it is easy to verify that ROM-reachability is in NP.
It follows that ROM-reachability is NP-complete.

But it is also known that 3-SAT is NP-complete even in the special case when
each literal appears twice among the clauses—i.e., there are two clauses that con-
tain xi and two other clauses that contain xi for i = 1, . . . , n [6]. When Φ is
such an instance, then in IΦ both bj1 and bj2 have exactly two unstable partners
in their preference lists for j = 1, . . . , n. The restriction on ROM-reachability
follows.

In our hardness result above, every agent in the SM instance has at least two
stable partners. We show next that for these kinds of instances determining if ROM
can reach a nontrivial stable matching can be answered in polynomial time. For each
agent a, let πa denote a permutation that consists first of an ordering of the agents
of the same gender as a except for a, followed by an ordering of the agents of the
opposite gender as a, and then ending with a. Let μ(a) refer to the partner of a in
the stable matching μ.

Lemma 2. Let I be an SM instance where each agent has at least two stable
partners. Suppose there is a permutation π of I so that ROM(π, I) outputs a nontrivial
stable matching of I. Let a be the last agent in π. Then ROM(πa, I) will also output
a nontrivial stable matching of I.

Proof. Denote the output of ROM(π, I) as μ. Without loss of generality, assume
a is a man, and let μM be the man-optimal stable matching of I. Then μ(a) = μM (a)
according to Fact 2(i). But since μ �= μM , there must be some woman b so that
μ(b) �= μM (b). In particular, b prefers μ(b) over μM (b) since μM (b) is her worst
stable partner in I. Additionally, μ(b) has to be a stable partner of b in I−a, the
instance obtained from I by removing agent a; otherwise, according to Fact 2(ii),
μ(b) = μM (b).

Now consider what happens in ROM(πa, I). At the end of iteration n − 1, the
stable matching is the woman-optimal stable matching of I−a. Hence b is matched
to μ(b) or somebody she prefers over μ(b) since μ(b) is one of her stable partners in
I−a. At iteration n, agent a arrives and a sequence of proposals are made by the men
until a stable matching is obtained. Since b is already matched, she will accept a new
offer only if it came from men she prefers over her current partner. In other words, b
will always be matched throughout iteration n and her partner will stay the same or
get better and better. Thus, at the end of iteration n, b has to be matched to μ(b) or
somebody she prefers over μ(b); that is, her partner cannot be μM (b). On the other
hand, since a is the last agent to arrive, a has to be matched to μM (a), which we
know is different from μW (a) since a has at least two stable partners. It follows that
the outcome of ROM(πa, I) is neither the man-optimal nor woman-optimal stable
matchings.

We emphasize that the lemma does not say that ROM(πa, I) and ROM(π, I) have
the same outputs; rather, if ROM(π, I) outputs a nontrivial stable matching, then so
will ROM(πa, I).
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Theorem 2. Suppose I has n agents each of which has at least two stable part-
ners. Then checking if ROM can reach a nontrivial stable matching of I takes O(n2|I|)
time.

Proof. First, determine the man-optimal and woman-optimal stable matchings of
I. Then for each agent a, construct a permutation πa and run ROM(πa, I). If one run
outputs a nontrivial stable matching of I, return “yes”; otherwise if the outputs of all
the runs are just the trivial stable matchings of I, return “no.” The correctness follows
from the previous lemma. Since there are n permutations to consider and ROM can
be implemented in O(n|I|) time, the whole procedure takes O(n2|I|) time.

4. Strongly ROM-reachable stable matchings. Recall that a stable match-
ing μ of I is strongly ROM-reachable if there is a permutation π of the agents of I
so that (i) ROM(π, I) outputs μ and (ii) μ1 ⊆ μ2 ⊆ · · · ⊆ μ|π| = μ, where μi is
the stable matching at the end of iteration i of ROM(π, I). Call π a permutation
associated with μ. Notice that the definition implies that once an agent is matched
in some μi, his or her partner must be the same one as in μ and remains so until
the end of ROM. Intuitively, it is easier to determine if a stable matching is strongly
ROM-reachable because ROM can build it one pair at a time.

Proposition 2. Let μ be a strongly ROM-reachable stable matching of I, and let
π be a permutation associated with μ. Suppose (m,w) ∈ μ, π(k) = m, π(k′) = w,
and k < k′. Then for i = k, k + 1, . . . , k′ − 1, m is unmatched in μi while for
i = k′, k′ + 1, . . . |A|, (m,w) ∈ μi.

In [12], Hoffman, Moeller, and Paturi defined the jealousy graph of a stable match-
ing μ, J(μ) as follows: The vertices of J(μ) are the pairs in μ, and there is a directed
edge from the pair (m,w) to another pair (m′, w′) whenever m′ prefers w to w′ or w′

prefers m to m′. In this section, we consider a “labeled” version of J(μ). Let L be
a labeling that assigns each agent of I as lucky or unlucky. We say that L respects
μ if for every pair in μ one agent is labeled lucky while the other is labeled unlucky.
For such a labeling, denote as JL(μ) the graph whose vertices are the pairs in μ such
that there is a directed edge from (m,w) to (m′, w′) if w is an unlucky agent and m′

prefers w to w′ or m is an unlucky agent and w′ prefers m to m′. Thus, JL(μ) is a
subgraph of J(μ) and keeps only the edges “caused” by the agents labeled unlucky
by L. Here now is our characterization of strongly ROM-reachable stable matchings
based on labeled jealousy graphs.

Theorem 3. A stable matching μ of I is strongly ROM-reachable if and only if
there is a labeling L that respects μ such that JL(μ) is acyclic.

Proof. Suppose μ is a stongly ROM-reachable stable matching of I. Let π be a
permutation that is associated with μ. For each pair (m,w) ∈ μ, label the agent that
appears first in π as unlucky and the agent that appears later in π as lucky. For the
unmatched agents, arbitrarily label them as lucky or unlucky. Call the labeling L∗.
We argue that JL∗(μ) is acyclic next.

Order the pairs of μ based on when the pairs’ lucky agents appeared in π. Denote
the ordering as p1, p2, . . . , p|μ|. Thus, among all pairs in μ, p1’s lucky agent appeared
in π first, followed by that of p2, etc. Now, consider an edge (pj , pk) in JL∗(μ).
Assume k < j. Let i be the iteration when ROM processes the lucky agent in pj .
Then at the end of iteration i − 1, the unlucky agent of pj is unmatched while pk
is part of the stable matching μi−1. But the edge from pj to pk implies that μi−1

has a blocking pair, a contradiction. Thus, it must be the case that k > j. Since we
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chose the edge (pj , pk) arbitrarily, p1, p2, . . . , p|μ| must be a topological ordering of
the vertices of JL∗(μ); i.e., JL∗(μ) is acyclic.

Let us now prove the converse. Suppose JL(μ) is acyclic. To prove that μ is
strongly ROM-reachable, we need to show that there is a permutation that is associ-
ated with μ. Let p1, p2, . . . , p|μ| be a topological ordering of JL(μ). Construct π by
making its (2j − 1)st agent be the unlucky agent in pj and the (2j)th agent be the
lucky agent in pj for j = 1, . . . , |μ|. Then add any unmatched agents in μ to the end
of the sequence. Consider ROM(π, I) next.

Claim. During the execution of ROM(π, I), μ2j−1 = μ2j−2 while μ2j = μ2j−2 ∪
{pj} for j = 1, . . . , |μ|.

Proof of claim. It is clear that μ1 is an empty matching while μ2 = {p1}. So
assume that the claim is true for j = 1, . . . , t′. Without loss of generality, let m be
an unlucky agent in pt′+1 = (m,w). When ROM processes m, m can propose to
the women on his list that are also in p1, . . . , pt′ . These may include women that
he prefers less over w. If such a woman prefers m to her current partner, it would
mean that there is a directed edge from pt′+1 to pk for some k < t′ + 1 in JL(μ), a
contradiction. Thus, every woman that m proposes to rejects him. It follows that at
the end of iteration 2t′ + 1, μ2t′+1 = μ2t′ and m is unmatched.

When ROM processes w, w will begin by proposing to the men on her list that
she prefers over m and who are also in p1, . . . , pt′ . But every such man m′ must prefer
his current partner over w because not doing so will mean that (m′, w) is a blocking
pair of μ. Since this cannot be the case, every man that w proposes to before m
rejects her. Thus, w will propose to m and he will accept because he is unmatched.
At the end of iteration 2t′ + 2, μ2t′+2 = μ2t′ ∪ {pt′+1}. By induction, we have shown
that the claim is true.

Finally, when ROM processes an unmatched agent a in μ, none of the agents a
proposes to will accept the proposal since it would mean that μ has a blocking pair.
Thus, after ROM has processed all the agents in p1, . . . , p|μ|, the stable matching is
μ and will remain so until the end of ROM. We have shown that π is a permutation
that accompanies μ so μ is a strongly ROM-reachable stable matching of I.

So how do we take advantage of Theorem 3 to determine if a stable matching
μ is strongly ROM-reachable? There are at least 2|μ| labelings of the agents of I
that respect μ so the brute force method of checking if one of the labelings L yields
an acyclic JL(μ) is infeasible. First, we note that strongly ROM-reachable stable
matchings are made up of strongly ROM-reachable stable submatchings.

Lemma 3. Suppose μ is a strongly ROM-reachable stable matching of I. Let
μ′ ⊆ μ. Then μ′ is also a strongly ROM-reachable stable matching of I|μ′ , the instance
obtained by restricting I to the agents in μ′.

Proof. Since μ is a strongly ROM-reachable stable matching, by Theorem 3 there
is a labeling L that respects μ such that JL(μ) is acyclic. Additionally, μ′ has to be
a stable matching of I|μ′ ; otherwise, if it has a blocking pair, then so will μ. Restrict
L to the agents in μ′ and call it L′. Clearly, L′ respects μ′ and JL′(μ′) is acyclic
since it is a subgraph of JL(μ). It follows that μ

′ is a strongly ROM-reachable stable
matching of I|μ′ .

Second, we define the notion of a sink agent whose name is meant to suggest that
it behaves like the sink node of a directed acyclic graph. We shall say that a stable
matching τ of I (not necessarily strongly ROM-reachable) has a sink agent if
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(i) there is a man m so that τ(m) = w is his best stable partner in I and for any
other pair (m′, w′) ∈ τ , m′ does not prefer w to his partner w′ or

(ii) there is a woman w so that τ(w) = m is her best stable partner in I and for
any other pair (m′, w′) ∈ τ , w′ does not prefer m to her partner m′.

In (i), we say m is a sink agent of τ while in (ii) w is a sink agent of τ .

Lemma 4. Every strongly ROM-reachable stable matching μ of I has a sink agent.

Proof. Let π be a permutation that is associated with μ. Consider the very last
matched agent that appears in π. Without loss of generality, let this agent be m
who is matched to w in μ, and let π(i) = m. This means that μi = μ but that w
is unmatched in μi−1. The latter implies that for every other pair (m′, w′) in μ, m′

preferred w′ to w. Hence, m is a sink agent of μ. If the last matched agent that
appears in π is a woman w, a similar proof will show that w is a sink agent of μ.

Our algorithm for determining if a stable matching is strongly ROM-reachable
is patterned after the standard algorithm for topologically sorting a directed acyclic
graph.

CheckDirectROM(τ, I)
Set i = 1, I1 = I, and τ1 = τ .
While τi has a sink agent a
let pi be the pair that consists of a and τi(a)
label a as lucky and τi(a) as unlucky
τi+1 ← τi − {pi} and Ii+1 ← I|τi+1

i← i+ 1
If τi is empty return (“yes”; p1, p2, . . . , p|τ |)
Else return (“no”; τi)

Theorem 4. CheckDirectROM correctly determines if a stable matching τ of I is
strongly ROM-reachable in O(|τ | × |I|) time. In each case, the algorithm also returns
a certificate that can be used to verify that the algorithm’s answer is correct.

Proof. Since every τi is a subset of τ , if τ is a strongly-ROM reachable stable
matching of I, then every τi is a strongly ROM-reachable stable matching of I|τi
according to Lemma 3. By Lemma 4, every τi has a sink agent. Thus, the algorithm
is correct in concluding that when some τi has no sink agent, the input τ is not a
strongly ROM-reachable stable matching. The lack of a sink agent in τi is evidence
that τ is not a strongly ROM-reachable stable matching.

Let |τ | = n. Now suppose that τ1, . . . , τn have sink agents. Let L be the labeling
that assigns each sink agent in pi as lucky and the partner as unlucky; the unmatched
agents are labeled arbitrarily. By the definition of sink agents, pn, pn−1, . . . , p1 is a
topological ordering of JL(μ) because pi will not have any edges to pi+1, . . . , pn in
JL(μ). Thus, μ is a strongly ROM-reachable stable matching of I, and the permuta-
tion π based on pn, pn−1, . . . , p1 as described in the proof of Theorem 3 can be used
to verify that ROM(π, I) outputs τ .

Finally, to determine if τi has a sink agent, we run the Gale–Shapley algorithm
to identify every agent’s best stable partner. The algorithm can be implemented in
O(|I|) time. Next, for each agent a matched to their best stable partner, we check
if there is a person who prefers τi(a) over their current partner in τi. We can do
this by going through the preference list of τi(a), and, for each person b that appears
in this list, we compare the rank of τi(b) and τi(a) in b’s preference list. Using the
appropriate data structure so that rank-checking can be done in O(1) time, this step
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can again be implemented in O(|I|) time. But there can be n τi’s so implementing
CheckDirectROM takes O(|τ | × |I|) time.

5. Extreme stable matchings. A stable matching is an extreme stable match-
ing if for every pair in the stable matching, either the man or the woman is matched to
his/her best stable partner (and consequently the other person is matched to his/her
worst stable partner). These stable matchings are interesting because they do not
have the “middle” submatchings like the αi2’s that μ

∗∗ had when we proved the NP-
completeness of ROM-reachability. Are all extreme stable matchings ROM-reachable?
We show that the answer to this question depends on the number of unstable partners
of the agents.

Theorem 5. Let I be an SMI instance where every agent has at most one unstable
partner. Then every extreme stable matching μ of I is strongly ROM-reachable.

Proof. Let μ be an extreme stable matching of I. For each pair (m,w) ∈ μ, label
the agent matched to his/her worst stable partner as unlucky and the other agent as
lucky.2 Call the labeling L. Clearly, L respects μ. To prove the theorem, we will
show that JL(μ) is acyclic.

Suppose this is not the case and the pairs (a1, b1), (a2, b2), . . . , (ak, bk) form a
directed cycle in JL(μ). Without loss of generality, we also assume that a1 is the
unlucky agent in (a1, b1). We will now establish that ai is the unlucky agent in (ai, bi)
for i = 2, . . . , k.

When k = 2 (i.e., the directed cycle has length 2), there is an edge from (a1, b1)
to (a2, b2) and from (a2, b2) to (a1, b1). The first edge implies that b2 prefers a1 over
a2. If additionally b2 is the unlucky agent in (a2, b2), then a1 prefers b2 over b1. This
makes {a1, b2} a blocking pair of μ, a contradiction. Thus, a2 must be the unlucky
agent in (a2, b2).

When k ≥ 3, there is an edge from (a1, b1) to (a2, b2) and from (a2, b2) to (a3, b3).
Again, the first edge implies that b2 prefers a1 over a2. In order for {a1, b2} not to
form a blocking pair, a1 must prefer b1 over b2. But since a1 is the unlucky agent in
(a1, b1), b1 is a1’s worst stable partner so a1 and b2 cannot be stable partners in I.
If b2 is the unlucky agent in (a2, b2), then the edge from (a2, b2) to (a3, b3) will also
imply that b2 and a3 are unstable partners in I using a similar reasoning. In other
words, b2 will have two unstable partners, contradicting our assumption about I. So
a2 must be the unlucky agent in (a2, b2). Applying the same reasoning around the
directed cycle, we conclude that ai is the unlucky agent in (ai, bi) for i = 2, . . . , k.

The above observation implies that each bi prefers ai−1 over ai. Since ai is already
bi’s best stable partner, bi and ai−1 must be unstable partners, and the preference
list of bi must consist of ai−1 first followed by ai and the rest of her stable partners.
On the other hand, consider ai. We already know that ai is the first person in bi+1’s
list. In order for {ai, bi+1} not be a blocking pair of μ, ai must prefer bi over bi+1.
Thus, the preference list of ai consists of all his stable partners including bi, his worst
stable partner, and is then followed by bi+1.

Let μ′ be the matching obtained by removing the pairs (a1, b1), (a2, b2), . . . , (ak, bk)
from μ and replacing them with (a1, b2), (a2, b3), . . . , (ak, b1). We argue next that μ′

has to be a stable matching of I too. If μ′ is not a stable matching, then it has a
blocking pair. Clearly, one of the agents in the blocking pair must be from the set

2If (m,w) is a fixed pair—i.e., they are matched to each other in all of the stable matchings of
I—then they are each other’s best and worst stable partners. Arbitrarily label one as lucky and the
other as unlucky.
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{a1, . . . , ak, b1, . . . , bk}; otherwise, the same pair will be blocking μ as well. Addition-
ally, none of b1, . . . , bk are part of the blocking pair since each one is matched to her
first choice. So suppose the blocking pair is (ai, b

′). Now, the partner of b′ in μ and
μ′ are the same but ai prefers bi, his partner in μ, over his partner bi+1, his partner
in μ′. Furthermore, bi and bi+1 are next to each other in ai’s preference list. Thus,
if (ai, b

′) is a blocking pair of μ′, then b′ is ahead of bi in ai’s preference list and has
to be a blocking pair of μ too. Since this is a contradiction, μ′ has no blocking pairs
and must be a stable matching of I.

But we already noted that ai and bi+1 are unstable partners in I. It must be the
case then that JL(μ) is acyclic and, consequently, μ is strongly ROM-reachable.

In the next lemma, we show that when we relax the condition on Theorem 5 and
allow agents to have two unstable partners in I, an extreme stable matching of I may
no longer be ROM-reachable.

Lemma 5. There is an SMI instance whose agents have at most two unstable
partners, and this instance has an extreme stable matching that is not ROM-reachable.

Proof. Consider the following SMI instance I:

m1: w1 w2

m2: w2 w1

m3: w1 w3 w4 w8

m4: w2 w4 w3 w7

m5: w7 w5 w6 w2

m6: w8 w6 w5 w1

m7: w7 w8

m8: w8 w7

w1: m6 m2 m1 m3

w2: m5 m1 m2 m4

w3: m4 m3

w4: m3 m4

w5: m6 m5

w6: m5 m6

w7: m4 m8 m7 m5

w8: m3 m7 m8 m6

For i = 1, 2, 3, 4, let αi1 = {(m2i−1, w2i−1), (m2i, w2i)} and αi2 = {(m2i−1, w2i),
(m2i, w2i−1)}. It is easy to verify that the man-optimal stable matching is α11 ∪α21 ∪
α31 ∪α41, the woman-optimal stable matching is α12 ∪α22 ∪α32 ∪α42, and the set of
stable matchings of I is {α1j1∪α2j2∪α3j3∪α4j4 , where j1, j2, j3, j4 ∈ {1, 2}}. In other
words, each agent has exactly two stable partners, and every stable matching of I is
an extreme stable matching. Furthermore, the agents m3,m4,m5,m6, w1, w2, w7, w8

all have two unstable partners. We will now prove that τ∗ = α11 ∪ α22 ∪ α32 ∪ α41 is
not reachable by ROM.

Let M1 and W1 denote the set of men and women who are matched to their best
stable partners in τ∗. Thus, M1 = {m1,m2,m7,m8} while W1 = {w3, w4, w5, w6}. If
there is a permutation π of I’s agents so that ROM(π, I) outputs τ∗, the last agent
in π must belong to M1 ∪W1.

Suppose that the last agent in π is m1. Consider the instance prior to ROM
processing m1, I−{m1}. Since there is one more woman than man in the instance, at
least one woman is unmatched in all the stable matchings of I−{m1}. In this case, it
is w3. (The reader can verify this by computing, say, the man-optimal matching of
I−{m1}.) According to Fact 2(b), this means that when ROM finally processes m1,
the woman w3 will be matched to her man-optimal stable partner in I, which is m3.
Thus, the output of ROM(π, I) is not τ∗.

If the last agent in π is m2,m7, or m8, the women w4, w5, w6, respectively, will
have to be matched to their man-optimal stable partner in I so τ∗ is again not the
output of ROM(π, I). A similar argument can be used to show why none of the agents
in W1 can be the last agent in π. It follows that π does not exist.
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(m5, w6) (m6, w5)

(m7, w7)

(m8, w8)

(m2, w2) (m1, w1)

(m4, w3)

(m3, w4)
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Fig. 1. The labeled jealousy graph of the stable matching (m1, w1), (m2, w2), (m3, w4),
(m4, w3), (m5, w6), (m6, w5), (m7, w7), (m8, w8) in the SMI instance described in the proof of
Lemma 5. The agents that are matched to their best stable partner are labeled lucky and under-
lined, while the agents that are matched to their worst stable partner are labeled unlucky.

Consider the stable matching τ∗ = (m1, w1), (m2, w2), (m3, w4), (m4, w3), (m5, w6),
(m6, w5), (m7, w7), (m8, w8) in the SMI instance described in the proof of Lemma 5.
Label the agents matched to their best stable partner as lucky and the agents matched
to their worst stable partner as unlucky. The graph in Figure 1 shows the labeled
jealousy graph of τ∗ using this labeling. Since the said stable matching is not ROM-
reachable (and therefore not strongly ROM-reachable too), the labeled jealousy graph
has directed cycles. On the other hand, suppose we modify the preference lists of the
agents so that every one has at most one unstable partner. For example, assume
m3 and w1, m4 and w7, m5 and w2, m6 and w8 are no longer in each other’s pref-
erence lists. Then the edges from (m1, w1) to (m3, w4), from (m4, w3) to (m7, w7),
from (m5, w6) to (m2, w2), and from (m8, w8) to (m6, w5) disappear from the labeled
jealousy graph. That is, the labeled jealousy graph will no longer contain a directed
cycle. This is so because according to Theorem 5, τ∗, still an extreme stable matching
of the instance, is now strongly ROM-reachable.

We will now use the SMI instance in the proof of Lemma 5 as a gadget to prove
the next theorem.

Theorem 6. Let I be an SMI instance where agents can have two or more un-
stable partners. Let μ be an extreme stable matching of I. Then determining if μ is
ROM-reachable is NP-complete.

Proof. Let Φ be a 3-SAT instance with n variables x1, x2, . . . , xn and q clauses
C1, C2, . . . , Cq. For each variable xi, create the subinstance

ai1: bi1 bi2 · · ·
ai2: bi2 bi1 · · ·

bi1: ai2 ai1
bi2: ai1 ai2

where the dots indicate that ai1 and ai2 may have more agents in their preference
lists. For each clause Cj , create the subinstance

mj1: wj1 wj2

mj2: wj2 wj1

mj3: wj1 wj3 wj4 wj8

mj4: wj2 wj4 wj3 wj7

mj5: wj7 wj5 wj6 wj2

mj6: wj8 wj6 wj5 wj1

mj7: wj7 wj8

mj8: wj8 wj7

wj1: mj6 mj2 mj1 mj3

wj2: mj5 mj1 mj2 mj4

wj3: mj4 zj1 zj3 mj3

wj4: mj3 zj2 mj4

wj5: mj6 mj5

wj6: mj5 mj6

wj7: mj4 mj8 mj7 mj5

wj8: mj3 mj7 mj8 mj6
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where zjk, k = 1, 2, 3 is based on the kth literal in Cj . If this literal is xi, set zjk to
ai1; otherwise, if the literal is xi, set zjk to ai2. Add wj3 or wj4 to to the preference
list of zjk depending on whose preference list zjk appears in. For j = 1, . . . ,m, let

τ∗j = {(mj1, wj1), (mj2, wj2), (mj3, wj4), (mj4, wj3), (mj5, wj6),

(mj6, wj5), (mj7, wj7), (mj8, wj8)}
and for i = 1, . . . , n let βi1 = {(ai1, bi1), (ai2, bi2)}. It is easy to verify that

μ∗∗ = τ∗1 ∪ τ∗2 ∪ · · · ∪ τ∗m ∪ β11 ∪ β21 ∪ · · · ∪ βn1

is an extreme stable matching of IΦ.

Claim. The 3-SAT instance Φ has a satisfying assignment if and only if there is
a permutation π of IΦ’s agents such that the output of ROM(π, IΦ) is μ

∗∗.

We omit the proof of the claim as it is very similar to that of Theorem 1. Given
3-SAT instance Φ with n variables and q clauses, we have created an instance IΦ
that has 4n+ 16q agents so that Φ is satisfiable if and only if μ∗∗, an extreme stable
matching of IΦ, is reachable by ROM. The theorem follows.

6. Conclusion. We investigated the stable matchings that Ma’s ROM [15] can
reach starting from the empty matching. Since ROM induces a probability distribu-
tion on an instance’s set of stable matchings, we were equivalently interested in the
stable matchings that are in the support of ROM. In the first half of the paper, we
showed that it is NP-complete to determine if a particular stable matching lies in
the support of ROM, but it is computationally easy to determine if some nontrivial
stable matching is in the support of ROM in the case when all agents have at least
two stable partners.

In the second half of the paper, we introduced the notion of a strongly ROM-
reachable stable matchings which are stable matchings that ROM can reach in a “di-
rect” manner. We provided a nice characterization and presented an efficient recog-
nition algorithm for these stable matchings. Interestingly, strongly ROM-reachable
stable matchings are also relevant to the EBL mechanism we described in the in-
troduction. Suppose μ is a strongly ROM-reachable stable matching and π is the
permutation found by CheckDirectROM. It is not difficult to show that when the re-
verse of π, πr, is the input to the EBL, the output is again μ. That is, in the context
of strongly ROM-reachable stable matchings, ROM and EBL are “equivalent” to each
other.

Question: What are the stable matchings μ for which there is a permutation π
so that ROM(π, I) = EBL(πr , I) = μ? Do they have to be strongly ROM-reachable?
What precisely are the stable matchings that are both ROM-reachable and EBL-reach-
able?

Last, we defined the class of extreme stable matchings and showed that the com-
putational complexity of determining if ROM can output an extreme stable matching
is dependent on the number of unstable partners of the agents. One interesting avenue
of research is to investigate the stable matchings that can be reached by ROM when
agents are allowed to enter as well as leave the market.

Question: Might some stable matchings which were not reachable by ROM in our
current setting be reachable in the setting where agents are also allowed to leave?

Acknowledgments. I would like to thank David Manlove, Péter Biró, Daniel
Moeller, and Ágnes Cseh, whose insightful questions, comments, and suggestions
helped shape the direction of this research.
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[2] A. Abdulkadiroǧlu, P. Pathak, A. Roth, and T. Sönmez, Changing the Boston School-
Choice Mechanism, NBER working paper 11965, 2006.

[3] H. Ackermann, P. Goldberg, V. Mirrokni, H. Röglib, and B. Vöcking, Uncoordinated
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