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ABSTRACT
Recent results have established that a variety of voting rules
are computationally hard to manipulate in the worst-case;
this arguably provides some guarantee of resistance to ma-
nipulation when the voters have bounded computational
power. Nevertheless, it has become apparent that a truly
dependable obstacle to manipulation can only be provided
by voting rules that are average-case hard to manipulate.

In this paper, we analytically demonstrate that, with re-
spect to a wide range of distributions over votes, the coali-
tional manipulation problem can be decided with overwhelm-
ing probability of success by simply considering the ratio
between the number of truthful and untruthful voters. Our
results can be employed to significantly focus the search
for that elusive average-case-hard-to-manipulate voting rule,
but at the same time these results also strengthen the case
against the existence of such a rule.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems ;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Computational complexity, Voting

1. INTRODUCTION
Voting is often used as a method of aggregating the pref-

erences of heterogeneous, self-interested agents. Unfortu-
nately, for a socially desirable outcome to emerge from an
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election, voters should reveal their true preferences—but
precluding manipulation is impossible in general. The cele-
brated Gibbard-Satterthwaite Theorem [2] states that, with
any reasonable voting rule (a function that determines the
outcome of the election, given the voters’ preferences), there
are elections where some of the voters can benefit by voting
untruthfully.

Computational complexity theory seemingly provides a
way to circumvent the Gibbard-Satterthwaite Theorem. It
has been suggested that, although in principle a voter may
lie in order to improve its position, determining if it is pos-
sible in practice, given a specific setting, may be a com-
putationally hard problem. Recent results imply that in-
deed manipulation is often NP-hard. Nevertheless, it can
be argued that worst-case hardness, although demonstrat-
ing some measure of resistance to manipulation, does not
preclude it. Therefore, an average-case analysis is required.

Naturally, it is not possible to find a voting rule that is
usually hard to manipulate with respect to any distribution
over the instances. However, on the face of it, it is reasonable
to hope for a voting rule that has this property at least
under certain interesting distributions. Sadly, two recent
papers presented evidence to the contrary [3, 1]. In this
paper, we pursue the abovementioned line of research by
establishing more results about the average-case tractability
of manipulations.

2. PRELIMINARIES
An election consists of a set V = {v1, v2, . . .} of voters,

and a set C = {c1, c2, . . . , cm} of candidates; voters’ indices
usually appear in superscript, while candidates’ indices usu-
ally appear in subscript. Each voter’s preferences can be
represented as a linear order;1 let L be the set of linear or-
ders on C. A voting rule is a function F : LV → C, that
maps the preferences of the voters to the winning candidate.

The voting rules we shall discuss in this paper are scoring
rules. A scoring rule is defined by a vector α = 〈α1, . . . , αm〉,
where the αl are real numbers such that α1 ≥ α2 ≥ · · · ≥
αm ≥ 0. Each voter awards α1 points to the candidate
it ranks first, α2 points to the candidate it ranks second,
and in general αl points to the candidate it ranks l’th. The
candidate with the most points (summed over all the voters)
wins the election. Some prominent scoring rules are:

• Plurality : �α = 〈1, 0, . . . , 0〉.
• Borda: �α = 〈m − 1, m − 2, . . . , 0〉.

1A linear order is a binary relation that satisfies antisym-
metry, transitivity, and totality.
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• Veto: �α = 〈1, . . . , 1, 0〉.
Hereinafter, we conceptually partition the set V of voters

into two sets: V = V1 � V2, where |V1| = N and |V2| =
n. V1 = {v1, . . . , vN} is the set of nonmanipulators, while
V2 = {vN+1, . . . , vN+n} is the set of manipulators, who are
colluding in an attempt to make a certain candidate p win
the election.

Definition 1. In the Coalitional-Weighted-

Manipulation (CWM) problem, we are given the set of
voters V = V1 � V2, the set of candidates C, the weights of
all voters, and a preferred candidate p ∈ C. In addition, we
are given the votes of the voters in V1, and assume that the
manipulators are aware of these votes. We ask whether it is
possible for the manipulators in V2 to cast their votes in a
way that makes the preferred candidate p win the election.

3. RESULTS
We wish to study the relationship between the number

of nonmanipulators versus manipulators (or, if you will, the
fraction of manipulators relative to overall voters) and the
chances that an instance of CWM is a “yes” or a “no” in-
stance. Essentially, we suggest that in many cases the ma-
nipulators cannot affect the outcome of the election at all.

Definition 2. An instance of CWM is a closed instance
if, no matter how the manipulators in V2 cast their votes,
the same candidate gets elected. An instance that is not a
closed instance is called an open instance.

3.1 Fraction of Manipulators is Small
In this subsection we demonstrate that when the fraction

of manipulators is small, that is n = o(
√

N), then usually
instances of CWM are closed. This result holds for scoring
rules, and requires only weak assumptions on the distribu-
tion of votes.

Lemma 1. Consider an instance of the coalitional manip-

ulation problem in a scoring rule with parameters �α. Let Si
k

be the score given to candidate ck by the voter vi. If there

exists a candidate ck such that for all cl 	= ck,
∑N

i=1
Si

k −∑N

i=1
Si

l > α1n, then the instance is closed.

Let Di be a distribution over voter vi’s votes, 1 ≤ i ≤ N ;
denote the joint distribution over votes by DN =

∏N

i=1
Di.

Di induces a random variable Si
k, which determines the

points voter vi awards candidate ck.

Theorem 1. Let P be a scoring rule with parameters �α,

and assume that the number of manipulators and nonma-

nipulators satisfies:

• n = o(
√

N).

Let Di be voter i’s distribution over the possible votes with

m = O(1) candidates, and denote DN =
∏N

i=1
Di. Let Si

k,

for each vi ∈ V1 and ck ∈ C, be random variables, induced

by the Di, which determine the score of candidate ck from

voter vi. Assume that the distributions over votes satisfy:

• (d1) There exists a constant d > 0 such that for all

vi ∈ V1 and ck, cl ∈ C, d < Var[Si
k − Si

l ].

• (d2) The Di are independently distributed.

Then the probability that an instance is closed converges to

1 as the number of voters grows.

Proof of Theorem 1. By Lemma 1 we have:

Pr
DN

[instance is closed]

≥ Pr
DN

[
∃ck ∈ C, ∀cl 	= ck,

N∑
i=1

S
i
k −

N∑
i=1

S
i
l > α1n

]

≥ Pr
DN

[
∀ck, cl 	= ck, |

N∑
i=1

S
i
k −

N∑
i=1

S
i
l | > α1n

]

= 1 − Pr
DN

[
∃ck, cl ∈ C s.t. 0 ≤

N∑
i=1

S
i
k −

N∑
i=1

S
i
l ≤ α1n

]
.

Now, by the union bound, we have that

Pr
DN

[
∃ck, cl ∈ C s.t. 0 ≤

N∑
i=1

S
i
k −

N∑
i=1

S
i
l ≤ α1n

]

≤
∑

ck,cl∈C

Pr
DN

[
0 ≤

N∑
i=1

S
i
k −

N∑
i=1

S
i
l ≤ α1n

]
.

(1)

Fix two candidates ck, cl ∈ C, and denote Xi = Si
k − Si

l .
Let μi = E[Xi], σi = Var[Xi]. Notice that

∑N

i=1
Si

k −∑N

i=1
Si

l =
∑N

i=1
Xi. In addition, observe that by assump-

tion (d1) d < σi, and thus
∑N

i=1
σi N→∞−→ ∞. In addition,

for all vi ∈ V , |Xi| ≤ α1. Therefore, we may apply the
Central Limit Theorem to the variables Xi.

Pr
DN

[
0 ≤

N∑
i=1

X
i ≤ α1n

]

= Pr
DN

⎡
⎣−∑N

i=1
μi√∑N

i−1
σi

≤
∑N

i=1
Xi − ∑N

i=1
μi√∑N

i−1
σi

≤ α1n − ∑N

i=1
μi√∑N

i−1
σi

⎤
⎦

N→∞−→ 1√
2π

∫ α1n−

∑N
i=1

μi√∑N
i−1

σi

−

∑N
i=1

μi√∑N
i−1

σi

e
−

x2

2 dx

≤
∫ α1n−

∑N
i=1

μi√∑N
i−1

σi

−

∑N
i=1

μi√∑N
i−1

σi

1 dx

=
α1n√∑N

i−1
σi

≤ α1n√
dN

= O

(
n√
N

)
.

Plugging this result into Equation (1), we have that

Pr
DN

[
∃ck, cl ∈ C s.t. 0 ≤

N∑
i=1

S
i
k −

N∑
i=1

S
i
l ≤ α1n

]

≤ m(m − 1) · O
(

n√
N

)

= O

(
n√
N

)
,
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where the second transition follows from the fact that m is
constant. Rolling back, we have that

Pr
DN

[instance is open] ≥ 1 − O

(
n√
N

)
.

Under the assumption that n = o(
√

N), this expression con-
verges to 1 as the number of voters grows.

3.2 Fraction of Manipulators is Large
In this subsection, we tackle a setting where the number of

manipulators is large, i.e., n = ω(
√

N), but not excessively
so, i.e., n = o(N). The mathematical techniques we use here
differ from the ones applied in Section 3.1.

Theorem 2. Let P be a scoring rule with parameters �α,

and assume that the number of manipulators and nonma-

nipulators satisfies:

• n = ω(
√

N) and n = o(N).

Let Di be voter i’s distribution over the possible votes with

m = O(1) candidates, and denote DN =
∏N

i=1
Di. Let Si

k,

for each vi ∈ V1 and ck ∈ C, be random variables, induced

by the Di, which determine the score of candidate ck from

voter vi. Assume that the distributions over votes satisfy:

• (d2) The Di are independently distributed

• (d3) The Di are identically distributed.

Let C′ = {ck ∈ C : ∀cl 	= ck, E[S1
k] ≥ E[S1

l ]} be the subset

of candidates with maximal expected score.

1. If |C′| ≥ 2, then the probability of drawing an open

instance converges to 1 as the number of voters grows.

2. If |C′| = 1 then the probability of drawing a closed

instance converges to 1 as the number of voters grows.

Corollary 3. Under the conditions of Theorem 2, if C′

is the set of candidates with maximal expected score, then

with probability that converges to 1 it holds that any candi-

date from C′ can be made to win, and no other candidate

can be made to win.

4. DISCUSSION
Consider Algorithm 1, which instantly decides instances

of the manipulation problem, drawn according to some dis-
tribution, on the basis of the ratio between the number
of manipulators and nonmanipulators. Theorems 1 and 2
directly imply that for any distribution that satisfies as-
sumptions (d1), (d2), and (d3), Algorithm 1 is almost never
wrong when the number of voters is large. Indeed, when
n = o(

√
N), Theorem 1 asserts that instances are almost

always closed—and therefore p can be made to win iff p

wins for any arbitrary vote of the manipulators. In case
n = ω(

√
N), Corollary 3 states that it is usually true that

the manipulators can only make candidates with maximal
expected score win the election.

But how restrictive are the assumptions (d1), (d2), and
(d3)? Assumption (d1) requires that there exist a con-
stant d > 0 such that for all vi ∈ V1 and ck, cl ∈ C, d <

Var[Si
k − Si

l ]. This is certainly a condition that seems very
reasonable: the demand is that according to each voter’s
distribution, there are no two candidates that always have

Algorithm 1 Deciding the coalitional manipulation prob-
lem in scoring rules via the fraction of manipulators. The
input is a voting instance drawn according to a distribution
over the votes of the nonmanipulators; p is the manipulators’
preferred candidate.

1: if n = o(
√

N) then � Theorem 1
2: choose arbitrary manipulators’ vote; c is the winner
3: if p = c then

4: return true

5: else

6: return false

7: end if

8: else if n = ω(
√

N) and n = o(N) then � Theorem 2
9: if p has maximal expected score then

10: return true

11: else

12: return false

13: end if

14: else � n = Θ(
√

N) or n = Ω(N)
15: return ?

16: end if

the same difference in scores. That is, we simply require
a seemingly minimal element of randomness in the votes.
Granted, requiring that the votes of the nonmanipulators be
distributed i.i.d.—the union of assumptions (d2) and (d3)—
is a much stricter assumption. Nevertheless, it is possible
to provide interesting distributions that satisfy all three as-
sumptions.

Although our results apply only to scoring rules, we be-
lieve that similar results hold for all other important voting
rules. Preliminary results indicate that this is certainly true
for the Copeland and Maximin rules—but the probabilistic
properties behind the proofs can be found in other voting
rules as well.

To conclude, there are two ways to interpret our results. A
positive interpretation would be that an average-case-hard-
to-manipulate voting rule and distribution exist, and the
results may simply help focus the search for such a distri-
bution. Interpreted negatively, these results strengthen the
case against the existence of voting rules that are hard to
manipulate. Indeed, they imply that the manipulation prob-
lem in many important voting rules can usually be trivially
decided, with respect to a wide range of distributions.
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