

CSCI 357: Algorithmic Game Theory Lecture IB: Game Theory I

Shikha Singh

Quick Recap

- Course website: <u>https://williams-cs.github.io/cs357-s22-www/</u>
- Course overview, syllabus, logistics and policies in **two** recordings on GLOW
- Problem sets: typeset in LaTeX, submit on Gradescope (code: KYERN3)
- Assignment 0 on GLOW (due Friday):
 - Join Slack and post an introduction in #general
 - Fill out course survey
 - Sign up for a short Zoom chat with me
- Assignments will typically be due 10 pm Thursdays

Any Questions about course overview and logistics?

Classroom discussion:

Examples of procedures/algorithms in your life where the rules do not necessarily lead to desirable behavior or have unintended consequences? Or on the flip side: examples of well-incentivized algorithms?

Defining a Game

- **Players**: the decision makers
 - People, governments, companies
- Actions: what can the players do
 - Enter a bid in an auction
 - Decide when to sell stock
 - Decide who to vote for
- Outcome
- Payoffs/Utility of each outcome to players
 - Represented a number (cardinal)
 - Or ordering over outcomes (ordinal)

Towards a Game Represenation

- To start, consider the simplest games
- Simultaneous move, single-action games
 - Eg. Rock, paper, scissors
- How many players?
- What are the actions available to players?
- What are the outcomes?
- What are the payoffs to players of the outcomes?
 - How can we represent this?

Normal-Form Representation

- Normal form/ Matrix Form/ Strategic Form:
 - List payoffs of players as a function of their actions
 - Assume players move simultaneously
- Conventions:
 - Row player is usually player 1
 - Column player is player 2
 - Payoffs for each outcome are written in each cell as a tuple, where first is player 1's payoff, then player 2

	Rock	Paper	Scissors
Rock	0,0	-1, 1	1, -1
Paper	1, -1	0,0	-1,1
Scissors	-1, 1	1, -1	0, 0

Extensive-Form Games

- Extensive-form (Sequential form): later in course
 - Encodes round-by-round actions/ timing of moves
 - Captures the information players learn during the game
 - Players keep track of history and act accordingly
 - Tic-tac-toe
 - Chess
 - Poker
 - Repeated games
 - Analyzing such games is more involved

Normal-Form Representation

- Finite, *n*-person normal form game (N, A, u)
 - Players: $N = \{1, ..., n\}$
 - Action set: for player i, set of actions A_i available
 - Action profile: $a = (a_1, \dots, a_n) \in A = A_1 \times \dots A_n$
 - Outcome of the game is action profile played
 - Utility function or Payoff function for player i is $u_i: A \to \mathbb{R}$
 - $u = (u_1, \dots, u_n)$ is a profile of utility functions
- Rationality assumption. Players will always act to maximize their utility
- Common knowledge assumption: Player rationality is common knowledge
 - Each players knows that everyone else knows that everyone else is rational.....

Normal-Form: Formalize

- Example: Rock, paper, scissors
 - **Players:** $N = \{1,2\}$
 - Action set: $A_i = \{\text{Rock, Paper, Scissors}\}$ for all i
 - Action profile/outcome example: (Rock, Paper)
 - Utility function
 - Symmetric, and maps to {-1,0,1}

	Rock	Paper	Scissors
Rock	0,0	-1, 1	1, -1
Paper	1, -1	0,0	-1,1
Scissors	-1, 1	1, -1	0, 0

ors} for all *i* ck, Paper)

Strategies

- A strategy, in general, is a sequence of actions that a player makes
 - e.g., in chess you need to "act" several times over the play

	Rock	Paper	Scissors
Rock	0,0	-1, 1	1, -1
Paper	1, -1	0,0	-1, 1
Scissors	-1, 1	1, -1	0, 0

• For simultaneous move games, we will use the term strategies and actions interchangeably

Complete Information

- In a game of complete information, every player knows the everything about the game:
 - Actions available to other players, and their utilities
 - Know that every player knows this as well
 - Know that every player is rational and is going to play to maximize their utility
- Let's players reason about "equilibrium" behavior: simplifies analysis
- This is not always true!
 - We will study incomplete information games as well

Prisoner's Dilemma

- Two alleged criminals questioned in separate rooms
- Each player has two actions:
 - Cooperate (C): stay silent and not admit to anything
 - Defect (D): testify agains the other person
- If both stay silent (C, C), each serves 1 year in prison for minor offense
- If one confesses against the other (C, D) or (D, C), confessor goes free while other person gets a long prison sentence
- If both confess (D, D), they each serve 3 years in prison
- We can write their preferences as an ordering

D

	a, a	b,c
)	<i>c</i> , <i>b</i>	d, d

c > a > d > b

Prisoner's Dilemma

- Two alleged criminals questioned in separate rooms
- Each player has two actions:
 - Cooperate (C): stay silent and not admit to anything
 - Defect (D): testify agains the other person
- If both stay silent (C, C), each serves 1 year in prison for minor offense
- If one confesses against the other (C, D) or (D, C), confessor goes free while other person gets a long prison sentence
- If both confess (D, D), they each serve 3 years in prison
- But more commonly, we use numbers to denote their utility

C	D
3, 3	0, 5

C

)	5, 0	1, 1
	-	-