Spring 2022

CSCl 357: Algorithmic Game Theory

 Lecture IB: Game Theory I Shikha Singh

Quick Recap

- Course website: https://williams-cs.github.io/cs357-s22-www/
- Course overview, syllabus, logistics and policies in two recordings on GLOW
- Problem sets: typeset in LaTeX, submit on Gradescope (code: KYERN3)
- Assignment 0 on GLOW (due Friday):
- Join Slack and post an introduction in \#general
- Fill out course survey
- Sign up for a short Zoom chat with me
- Assignments will typically be due 10 pm Thursdays

Any Questions about course overview and logistics?

Classroom discussion:

Examples of procedures/algorithms in your life where the rules do not necessarily lead to desirable behavior or have unintended consequences? Or on the flip side: examples of well-incentivized algorithms?

Defining a Game

- Players: the decision makers
- People, governments, companies
- Actions: what can the players do
- Enter a bid in an auction
- Decide when to sell stock
- Decide who to vote for
- Outcome
- Payoffs/Utility of each outcome to players
- Represented a number (cardinal)
- Or ordering over outcomes (ordinal)

Towards a Game Represenation

- To start, consider the simplest games
- Simultaneous move, single-action games
- Eg. Rock, paper, scissors
- How many players?
- What are the actions available to players?
-What are the outcomes?
- What are the payoffs to players of the outcomes?
- How can we represent this?

Normal-Form Representation

- Normal form/ Matrix Form/ Strategic Form:
- List payoffs of players as a function of their actions
- Assume players move simultaneously
- Conventions:
- Row player is usually player 1
- Column player is player 2
- Payoffs for each outcome are written in each cell as a tuple, where first is player 1 's payoff, then player 2

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

Extensive-Form Games

- Extensive-form (Sequential form): later in course
- Encodes round-by-round actions/ timing of moves
- Captures the information players learn during the game
- Players keep track of history and act accordingly
- Tic-tac-toe
- Chess
- Poker
- Repeated games
- Analyzing such games is more involved

Normal-Form Representation

- Finite, n-person normal form game (N, A, u)
- Players: $N=\{1, \ldots, n\}$
- Action set: for player i, set of actions A_{i} available
- Action profile: $a=\left(a_{1}, \ldots, a_{n}\right) \in A=A_{1} \times \cdots A_{n}$
- Outcome of the game is action profile played
- Utility function or Payoff function for player i is $u_{i}: A \rightarrow \mathbb{R}$
- $u=\left(u_{1}, \ldots, u_{n}\right)$ is a profile of utility functions
- Rationality assumption. Players will always act to maximize their utility
- Common knowledge assumption: Player rationality is common knowledge
- Each players knows that everyone else knows that everyone else is rational

Normal-Form: Formalize

- Example: Rock, paper, scissors
- Players: $N=\{1,2\}$
- Action set: $A_{i}=\{$ Rock, Paper, Scissors $\}$ for all i
- Action profile/outcome example: (Rock, Paper)
- Utility function
- Symmetric, and maps to $\{-1,0,1\}$

	Rock		Paper
Scissors			
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

Strategies

- For simultaneous move games, we will use the term strategies and actions interchangeably
- A strategy, in general, is a sequence of actions that a player makes
- e.g., in chess you need to "act" several times over the play

	Rock		Paper
Scissors			
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

Complete Information

- In a game of complete information, every player knows the everything about the game:
- Actions available to other players, and their utilities
- Know that every player knows this as well
- Know that every player is rational and is going to play to maximize their utility
- Let's players reason about "equilibrium" behavior:
simplifies analysis
- This is not always true!
- We will study incomplete information games as well

Prisoner's Dilemma

- Two alleged criminals questioned in separate rooms
- Each player has two actions:
- Cooperate (C): stay silent and not admit to anything
- Defect (D): testify agains the other person
- If both stay silent (C, C), each serves 1 year in prison for
 minor offense
- If one confesses against the other (C, D) or (D, C), confessor goes free while other person gets a long prison sentence
- If both confess (D, D), they each serve 3 years in prison
- We can write their preferences as an ordering

C	C	D
	a, a	b, c
D	c, b	d, d
	$c>a>d>b$	

Prisoner's Dilemma

- Two alleged criminals questioned in separate rooms
- Each player has two actions:
- Cooperate (C): stay silent and not admit to anything
- Defect (D): testify agains the other person
- If both stay silent (C, C), each serves 1 year in prison for minor offense
- If one confesses against the other (C, D) or (D, C), confessor goes free while other person gets a long prison sentence
- If both confess (D, D), they each serve 3 years in prison
- But more commonly, we use numbers to denote their utility

