

CSCI 357: Algorithmic Game Theory Lecture IA: Overview & Logistics

Shikha Singh

About Me

- Instructor: Shikha Singh (she/her)
- Can call me Shikha or Prof. Shikha or Prof. Singh ullet
- Pronunciation tips:
 - "Shi" is like in ship not sheep
 - Shikha is like Chica in Chica-ago
- Webpage: <u>http://cs.williams.edu/~shikha/</u>
- Research: Algorithms and Algorithmic Game Theory
- Contact: <u>shikha@cs.williams.edu</u>
- Office: TCL 304 ightarrow

Algorithmic Game Theory

- Relatively new field (~15 years or so)
- Gained momentum due to the Internet & e-commerce \bullet
- Also called *Economics and Computation*
- Economic to CS:
 - Incentives in resource allocation, online advertising, file sharing, etc
- CS to Econ:
 - Efficiency
 - Approximations ullet
 - Complexity

Math

Economics

Game Theory

AGT

Algorithms

Computer Science

Game Theory

- Study of strategic interactions between rational agents
- Players play to maximize their utility in the game
- Pre-existing rules
- Goal is to analyze rational behavior

Algorithms

 Specify rules that given an input, produce a desired output/outcome

• Design goals:

- Optimize an objective function
- Efficiency and simplicity
- Quality of outcome

Algorithmic Game Theory

CS357: How does strategic behavior affect the outcome of an algorithm?

Routing in Networks

Resource allocation

Matching problems

Algorithmic Game Theory

Often the system designer's (global) objective does not necessarily align with that of the participants (local).

Routing in Networks

Resource allocation

Matching problems

Why Should We Care About Incentives?

- When we don't, things may go wrong unexpectedly... ullet
- Classic example: 2012 Olympics •

Olympic Ideal Takes Beating in **Badminton**

Clockwise from top left, the women's badminton doubles pairs: China's Wang Xiaoli, left, and Yu Yang; South Korea's Jung Kyung-eun, top, and Kim Ha-na; Indonesia's Greysia Polii and Meiliana Jauhari; and South Korea's Ha Jung-eun and Kim Min-jung during matches in London. The players were charged with misconduct by the World Badminton Federation. Bazuki Muhammad/Reuters

Rules of the Game

- Four groups of four teams each
- First phase: round-robin within each group
- Top two teams advance to knockout stage
 - Four quarter finals: losers eliminated
 - Two semifinals (losers play for bronze)
 - One final (winner: gold, loser: silver)

)

- - Best from C plays the second-best from group A in the ightarrow3rd quarterfinal.
 - Top two teams from B and D are paired up analogously in the 2nd and 4th quarterfinals.

Rules of the Game

- How are teams paired in knockouts? •
 - Best from A plays second-best team from C in the 1st ulletquarterfinal
 - Best from C plays the second-best from group A in the • 3rd quarterfinal.
 - Top two teams from B and D are paired up analogously in the 2nd and 4th quarterfinals.

What do organizers want?

What Went Wrong

- Chinese team Tian and Zhao (TZ): favored team to win
- Last day of round-robin: shocking upset •
 - Danish team Pedersen and Juhl (PJ) beat the TZ ullet
- First controversial match between Chinese team Xiaoli & Yang (XY) and S Korean team Kyung-eun & Ha-na (KH)
 - Both teams were guaranteed to move to knockouts
 - Winner: faces TZ in semifinals (can win bronze)
 - Loser: faces TZ in finals (silver guaranteed)
 - So... both teams tried to deliberately lose the game
- Video: <u>https://youtu.be/7mq1ioqiWEo?t=791</u>

"The next time we bemoan people exploiting loopholes to subvert the intent of the rule makers, instead of asking 'What's wrong with these people?" let's instead ask, `What's wrong with the rules?' and then adopt a scientifically principled approach to fixing them"— Hartline and Kleinberg

Incentives Matter: Voting

- System designer's goal: to elicit truthful preferences over candidates
- Why voters may not vote truthfully?
 - Tactical voting: May not want to "waste their vote" if their favorite candidate does not have a chance to win
- Bush vs Gore 2000 US Presidential Election
 - Nader traders: <u>https://slate.com/news-and-politics/</u> 2000/10/nader-s-traders.html
- Tactical voting can be reduced by instant-runoff voting, a system where voters cast ballots ranking the candidates

HIGH CONCEPT

Nader's Traders

How to save Al Gore's bacon by swapping votes on the Internet.

Classroom exercise:

Can you come up with examples of procedures/algorithms in your life where the rules do not necessarily lead to desirable behavior or have unintended consequences?

Or on the flip side: examples of well-incentivized algorithms?

Mechanism Design

- In this course we will learn how to design and analyze mechanisms that incentivize rational participants to act in a desired way
- Goal: align the goals of system designer and participants
- Often called reverse game theory
- Many applications in everyday life:
 - Internet search auctions
 - Wireless spectrum auctions
 - Matching markets
 - Students to school
 - Patients to kidneys
 - Hospitals to doctors

Google

internet search auctions 🖾 Images : More C Shopping Setting I News About 357,000,000 results (0.35 seconds)

Ad · www.betterworld.org/free/auctions •

BetterWorld - Online Fundraising Auctions - betterworld.org

We Are a New Organization Dedicated to Serving Nonprofit Leaders. Part of the BetterWorld network. No Hidden Costs. View Tools. Chat Support Available. Sign Up Online. Highlights: Full Suite Of Fundraising Tools Available, Help Center Available, No Hidden Costs.

Real-time Auctions

Use Our Platform To Customize Your Auction Campaign. Know More.

Online Raffles

We Provide Online Raffles For Effortless Fundraising.

In mechanism design, we try to carefully design rules and centralized systems to obtain good guarantees. Question. But, how bad is selfish behavior anyway?

Fundamentals of Game Theory

- In this course, we will learn how to analyze selfish behavior
- We will use concepts from game theory:
 - Dominant strategy equilibrium
 - Nash equilibrium
 - Bayes' Nash equilibrium
 - Subgame perfect equilibrium
- Some of you may have taken Game Theory in Math/Econ
 - Our focus is very different
 - We will cover all concepts that we need
- Goal: Analyze when selfish behavior (what is good for one) is also good for the group

Incentives in Computer Science

- Finally, in this course we will learn how lessons from game theory and mechanism design apply to CS system design:
 - Incentives in computer networks
 - Incentives in P2P systems such as file sharing (torrents), inter-AS routing, blockchains, etc.
 - Incentives in resource-allocation algorithms, scheduling algorithms
 - Incentives in matching, or consensus/aggregation algorithms

Course Logistics

Course Components

- Weekly problem sets (35 %)
 - Problems involving theoretical analysis (proofs)
 - Type in LaTeX, submit on Gradescope
 - Occasional programming assignments (Python)
- Two take-home midterm exams (20 + 20 %)
 - Tentatively ~ March 12 & April 23
- Final project on a topic of your choice (20 %)
 - Can be theoretical or empirical study
 - Project proposal + class presentation + final paper
- Class participation and attendance (5 %)
 - Attendance is required: contact me if you must miss class

Class Participation

- I like interaction in our classes!
- Many ways to participate:
 - Ask questions! (there are no bad questions!)
 - Answer questions (there are no wrong answers!)
 - Laugh at my jokes... (no guarantees here)
 - Talk to me after class/come to office hours
- Class participation does not mean dominating classroom discussions or interrupting your peers

Bottom line. Help create a vibrant, positive and inclusive classroom environment!

Problem Sets

- Must be typeset in LaTeX using template provided
- Goal: Practice formalizing concepts we introduce in class
- PDF must be submitted via Gradescope
 - Register on Gradescope using course code: KYERN3
- Released on Thursdays & due the following Thursday at 10 pm
- Each student is allowed two late days (at most one per assignment)
 - Beyond that, any late work is penalized 20% per day
- If you need extensions for (mental or physical) health -related reasons, please reach out to me

Final Project

- Goal is for you to dig deeper on a topic of your interest
- Can be theoretical or programming based
- Must involve significant depth on a topic that is not covered in course
- Deliverables
 - Short project proposal meetings with instructor
 - Short class presentation during last week
 - Final paper due during finals period
- I will provide project ideas but encourage you to pick your own

F21 Project "Strategic Behavior in Voting" by Sam Gilman '21 & Peter Zhao '21 won the Ward Prize for Best Project in Computer Science!

Tentative Course Plan

Week	Monday
2/2	
7/2	2. Game Theory I
14/2	4. Auctions I
21/2	6. Sponsored Search Auctions
28/2	8. Incomplete Information Games
7/3	10. Revenue Maximization
14/3	12. Stable Matchings 1
	Spring Break
4/4	14. Top Trading Cycles & Kidney Exchange
11/4	16. Voting 2
18/4	18. Repeated Games & BitTorrent
25/4	
2/5	21. Incentives in Blockchains
9/5	23. Project Presentations

Thursday

- 1. Welcome
- 3. Game Theory II
- 5. Auctions II
- 7. Algorithmic Mechanism Design
- 9. BNE in Auctions
- 11. Matching Markets
- 13. Stable Matchings 2

Spring Break

- 15. Voting 1
- 17. Sequential Games
- 19. BGP Routing
- 20. Spectrum Auctions
- 22. Complexity of Equilibrium
- 24. Project Presentations

Economics

Game Theory Mechanism Design

Incentives in CS/Algorithms

Tentative Course Plan

Week	Monday
2/2	
7/2	2. Game Theory I
14/2	4. Auctions I
21/2	6. Sponsored Search Auctions
28/2	8. Incomplete Information Games
7/3	10. Revenue Maximization
14/3	12. Stable Matchings 1
	Spring Break
4/4	14. Top Trading Cycles & Kidney Exchange
11/4	16. Voting 2
18/4	18. Repeated Games & BitTorrent
25/4	
2/5	21. Incentives in Blockchains
9/5	23. Project Presentations

Thursday

- 1. Welcome
- 3. Game Theory II
- 5. Auctions II
- 7. Algorithmic Mechanism Design
- 9. BNE in Auctions
- 11. Matching Markets
- 13. Stable Matchings 2

Spring Break

- 15. Voting 1
- 17. Sequential Games
- 19. BGP Routing
- 20. Spectrum Auctions
- 22. Complexity of Equilibrium
- 24. Project Presentations

Markets with Money

Markets w/o Money

Readings Textbook(s)

- No single textbook; we will refer to several
 - Twenty Lectures in Algorithmic Game Theory by Roughgarden
 - Algorithmic Economics: A Design Approach by Parkes and Sueken (Unpublished, shared with us by author's permission)
 - Networks, Crowds and Markets by Easley and Kleinberg (available) online)
 - Mechanism Design and Approximation by Hartline (available online.)
- Relevant chapters will be linked on GLOW (do not share)
- Will read research papers on relevant topics along the way
- Please skim readings before class and re-read after!

What to Expect

- Theoretical content: formalize and analyze properties of the mechanisms
 - Expect to write proofs
- Learn about economics
- Technical prerequisites:
 - Probability and multi-variable calculus
 - Python for simulations
 - Always reach out if you need more resources/help on prerequisites
- Learn about cool real-life algorithms and their consequences
- Have fun!

Course Support

• We have a TA ! (Rather half a TA, but still yay!)

- Tai Henrichs (took AGT in Fall 2021)
- Will hold ~2.5 hours of TA hours per week
- My office hours:
 - Tues & Wed 2-4.30 pm, Thurs 4-5 pm
- Treat office hours like lab time
 - Come and work on the problem set
 - Great place to collaborate with peers!

Assignment 0 Activities

- Posted on GLOW
- Join Slack:
 - Post an introduction with photo in #general
 - Get to know your classmates!
- Fill out short course survey
 - Let me know if you have any questions or concerns
- Sign up for a short Zoom chat with me
- Sign up for Gradescope

Honor Code Policies

- Collaboration is encouraged
 - Can discuss questions at a high-level
 - No sep-by-step problem solving or joint writing
 - Cannot share source code or write ups!
- Never turn in a solution you do not understand
- Always cite collaborators and resources in Acknowledgment section
- You are not allowed to research homework questions on the internet
 - This would be violation of the honor code

Coming Up

- Our first synchronous lecture (Lecture 1 Part B) will be held on Wed Feb 2 from 3.10-3.50 pm
 - Formalizing a game and Nash equilibrium
- Assignment 1 will be released Thursday Feb 3, due Thursday Feb 10th
- Lecture 2 will be held synchronously on Zoom on Monday Feb 7 at 2.35 pm
- Looking forward to meeting all of you!