CSCI 357: Algorithmic Game Theory

Lecture 15: Voting \& Social Choice 2
Shikha Singh

Announcements and Logistics

- Homework 6 is due this tonight at 11 pm
- Office hours in this room after lecture: $4-5.30 \mathrm{pm}$
- TA hours tonight 8-9.30 pm
- Homework 7 (Voting) will be released tomorrow
- Partner assignment
- Will send out a partner form
- Let me know if you want me to help you find a partner

Questions?

Last Time

- A set A of alternatives and a $N=\{1,2, \ldots, n\}$ of voters
- Each agent $i \in N$ submits a list L_{i} (ranking over A)
- Social-choice function selects a single alternative for a given preferences profile, that is, $L_{1}, L_{2}, \ldots, L_{n} \mapsto a^{*}$ where $a^{*} \in A$
- Majority rule: elect the candidate with the majority of votes when there are only two alternates ($|A|=2$)
- Plurality rule: elect the candidate with most 1st-place votes
- Ranked-choice voting: In each round eliminates the person with fewest first-place votes, and recurses
- Condorcet criterion and strategyproofness
- Plurality and ranked-choice do not satisfy either

Borda Count

- Well known voting rule: often used in sports, also used in Eurovision song contest
- Voters submit their full ranked lists: an alternate gets $|A|$ for each first-choice vote, $|A|-1$ points for each second-choice vote, and so on and 1 point for each last-choice vote
- For our example:
- a gets 15 points
- b gets 12 points
- c gets 10 points

	Voters \#1,2	Voters $\# 3,4$	Voter \#5
1st Choice	a	b	c
2nd choice	d	a	d
3rd choice	c	d	b
4th choice	b	c	a

- d gets 13 points
- Borda count would elect a (in contrast to ranked-choice b)

Borda Count

- Is Borda count strategyproof?
- Idea: incentive to rank closest competitor to preferred candidate last
- In example, what is the Borda score of a and b ?
- a 's score: $2 \cdot 3+4=10$
- b 's score: $2 * 4+3=11$
- If voter 3 moves b to the last place
- b^{\prime} s score: $8+1=9$
- Thus, a will win now

Positional Scoring Rules

- In general, you can have different ways to score each position
- For each vote, a positional-scoring rule on $m=|A|$ alternatives assigns a score of α_{j} to the alternative ranked in j th place. The alternative with maximum total score (across all votes) is selected.
- Assume $\alpha_{1} \geq \alpha_{2} \geq \ldots \alpha_{m}$ and $\alpha_{1}>\alpha_{m}$
- E.g., plurality gives 1 point for first-choice, zero for others
- Many positional scoring rules have been studied
- Plurality can be thought of a positional voting rule, how?
- Veto (HW 7) is also another example

Borda Count

- Does Borda satisfy the Condorcet criterion?
- Question in Homework 7

Many Rules, Many Applications

EuroMision
YOUDECIDE

Who Vetoed the Most in the UN?

https://rohitvaish.in/Teaching/2022-Spring/Slides/Lec\ 2.pdf

One to Rule them All?

- For the same input profile, plurality, Borda and ranked-choice can all output a different winner!
- Can you construct such an example?
- Changing the voting rule changes the outcome of the mechanism
- Leads to contention on which voting rule is the "best"
- Voting theorists have an "axiomatic" approach to study voting rules
- Identify "desirable" properties that one would like
- Compare rules based on that
- Question: Is there any voting rule that is strategyproof and reasonable?

Properties of Voting Rules

- Onto: For any candidate a, there exists an input profile where a wins

- Are Borda, plurality, ranked-choice etc onto?
- Yes, can always construct a profile to make any candidate win

Properties of Voting Rules

- Strategyproof: No voter can improve by misreporting preferences

- Are Borda, plurality, ranked-choice etc strategyproof?
- No

Onto and Strategyproof

- (3 or more alternatives) onto but not strategyproof?

Borda, Plurality, Ranked-choice

- (3 or more alternatives) strategyproof but not onto? Constant or restricted majority

A Bad Voting Rule

- Dictatorship : A voting rule is dictatorial if there is a voter i such that the rule always elects i 's first choice (regardless of others' preferences)

- Is a dictatorship straregyproof?
- Is a dictatorship onto?

[Gibbard '73, Satterthwaite '75]

When there are 3 or more alternatives, a voting rule is strategyproof and onto if and only if it is dictatorial.

Impossibility Result

- Gibbard-Satterthwaite theorem.

When there are 3 or more alternatives, a voting rule is strategyproof and onto if and only if it is dictatorial

- We only a dictatorial mechanism is strategyproof and onto
- Need to show, SP + Onto \Longrightarrow dictatorship
- We will only prove it for $n=2$ voters. Break into several steps
- $\mathrm{SP} \Longrightarrow$ Monotone
- $\mathrm{SP}+$ Onto \Longrightarrow Pareto optimality
- GS Proof: Monotone + Pareto optimal \Longrightarrow dictatorship

Monotonicity

- Definition. Suppose a is the current winner (on profile L). For all input profiles L^{\prime}, in which for all voters, any candidate who was ranked below a in L is still ranked below a in L^{\prime}, then a should continue to win in L^{\prime}.
- Support of a either increases or stays the same: a 's outcome cannot get worse
- Theorem. Strategyproof \Longleftrightarrow monotone

Strategyproof \Longrightarrow Monotone

- Suppose a rule is strategyproof but not monotone

Strategyproof \Longrightarrow Monotone

- Suppose a rule is strategyproof but not monotone

Strategyproof \Longrightarrow Monotone

b cannot be above a here, why? A reverse manipulation exists! (Contradiction to SP)

Means b is below a here

Pareto Optimality

- Definition. Given preference profile L, if there is an alternative a that every voter prefers to b, then $f(L) \neq b$.
- Lemma. $\mathrm{SP}+$ Onto \Longrightarrow Pareto optimality

Pareto Optimality

- Definition. Given preference profile L, if there is an alternative a that every voter prefers to b, then $f(L) \neq b$.
- Lemma. SP + Onto \Longrightarrow Pareto optimality
- Proof. Suppose $f(L)=b$. Consider L^{\prime} below. $f\left(L^{\prime}\right)=$?

Pareto Optimality

- Definition. Given preference profile L, if there is an alternative a that every voter prefers to b, then $f(L) \neq b$.
- Lemma. SP + Onto \Longrightarrow Pareto optimality
- Proof. Suppose $f(L)=b$. Consider L^{\prime} below. $f\left(L^{\prime}\right)=$?

Pareto Optimality

- Definition. Given preference profile L, if there is an alternative a that every voter prefers to b, then $f(L) \neq b$.
- Lemma. $\mathrm{SP}+$ Onto \Longrightarrow Pareto optimality
- Proof. Suppose $f(L)=b$. By onto, there exists a profile $L^{\prime \prime}$ where a wins.

Impossibility Result

- Gibbard-Satterthwaite theorem.

When there are 3 or more alternatives, a voting rule is strategyproof and onto if and only if it is dictatorial

- We only a dictatorial mechanism is strategyproof and onto
- Need to show, SP + Onto \Longrightarrow dictatorship
- We will only prove it for $n=2$ voters. Break into several steps
- $\mathrm{SP} \Longrightarrow$ Monotone
- $\mathrm{SP}+$ Onto \Longrightarrow Pareto optimality
- GS Proof: Monotone + Pareto optimal \Longrightarrow dictatorship

GS Proof for $n=2$

- Need to show: when we have 2 voters, and any number of alternatives, then monotone + Pareto optimality implies that one of the voters is a dictator (for each alternative)
- Break into two parts:
- Claim 1. Consider a monotone and Pareto-optimal rule f with two voters and alternatives $a, b \in A$. Then either voter 1 is a dictator for a or voter 2 is a dictator for $b(\operatorname{wrt} f)$.
- Claim 2. Consider a monotone and Pareto-optimal rule f with two voters and alternatives $a, b \in A$. Then either voter 1 is a dictator for a or voter 2 is a dictator for b (wrt f).

GS Proof for $n=2$

- Claim 1. Consider a monotone and Pareto-optimal rule f with two voters and alternatives $a, b \in A$. Then either voter 1 is a dictator for a or voter 2 is a dictator for b (wrt f).
- Proof. Consider an input profile L.
- What can we say about $f(L)$?

GS Proof for $n=2$

- Claim 1. Consider a monotone and Pareto-optimal rule f with two voters and alternatives $a, b \in A$. Then either voter 1 is a dictator for a or voter 2 is a dictator for b (wrt f).
- Proof. Consider an input profile L.
- What can we say about $f(L)$?

GS Proof for $n=2$

- Claim 1. Consider a monotone and Pareto-optimal rule f with two voters and alternatives $a, b \in A$. Then either voter 1 is a dictator for a or voter 2 is a dictator for b (wrt f).
- Proof. Without loss of generality, suppose $f(L)=a$
- Consider L^{\prime} which is same as L except 2 moves a to last place
- By monotonicity over other candidates, $f\left(L^{\prime}\right)$ cannot be anything other than a

GS Proof for $n=2$

- Claim 1. Consider a monotone and Pareto-optimal rule f with two voters and alternatives $a, b \in A$. Then either voter 1 is a dictator for a or voter 2 is a dictator for b (wrt f).
- Proof. Without loss of generality, suppose $f(L)=a$
- Now consider $L^{\prime \prime}$ where 1 ranks a at the top, all other rankings are arbitrary
- Then, $f\left(L^{\prime \prime}\right)=a$ by monotonicity between L^{\prime} and $L^{\prime \prime}$ wrt a

GS Proof for $n=2$

- Claim 1. Consider a monotone and Pareto-optimal rule f with two voters and alternatives $a, b \in A$. Then either voter 1 is a dictator for a or voter 2 is a dictator for b (wrt f).
- Proof. Without loss of generality, suppose $f(L)=a$
- Thus, 1 is a dictator for a.
- Analogously, we can assume $f(L)=b$ and show 2 is a dictator for $b \square$

GS Proof for $n=2$

- Claim 2. Consider a strategyproof and onto rule f with two voters, then one of them must be a dictator for each alternative $a \in A$.
- Proof. Consider a triple (a, b, x), where $a, b \in A$ and $x \in A \backslash\{a, b\}$
- Applying our earlier claim to (a, b) :
- Either 1 must be a dictator for a or 2 must be a dictator for b
- Wlog assume 1 must be a dictator for a
- Applying our earlier claim to (b, x)
- Either 1 must be a dictator for b or 2 must be a dictator for x
- Since 1 is already a dictator for $a, 2$ cannot be a dictator for x, why?
- Thus 1 must be a dictator for both a, b
- Similarly, considering (x, a) : 1 must be a dictator for x as well
- Applying this to all triples, concludes the proof

Arrow's Impossibility Theorem

- The GS theorem is closely related to and can be derived from an even more famous impossibility result: Arrow's theorem
- Arrow's impossibility theorem. With three or more alternatives, no social-rank function satisfies the following three properties:
- Non-dictatorship
- Unanimity
- Independence of irrelevant alternatives (IIA)
- Unanimity means if every voter ranks a over b, then the social-rank function should rank a over b
- IIA means that, for every pair a, b of alternatives, the relative order of

Plurality does not satisfy IIA (e.g., Bush vs Gore outcome was affected by Nader)

Arrow's and GS

- One can also derive the Gibbard-Satterthwaite theorem from Arrow's theorem, using a reduction argument
- Suppose we have a non-trivial and strategyproof voting rule
- Use it to construct a a voting rule that satisfies the three conditions in Arrow's theorem
- Intuitively, not satisfying IIA can lead to opportunities for strategic manipulation
- You also need to ensure technicalities like Arrow's theorem is a result about social-ranking functions (voting rules that produce a full ranked list) while the GS theorem holds even for social choice functions (voting rules that elect a winner)

Takeaways

- When when we have two voters, and more than two alternatives, any voting rule that is reasonable (onto and non-dictatorial) is manipulable!
- Does this mean we should give up on strategyproofness entirely?
- How have we been managing to design strategyproof mechanism rules so far?

> "The GS theorem seems to quash any hope of designing incentivecompatible social-choice functions. The whole field of Mechanism Design attempts escaping from this impossibility result using various modifications.": Nisan

Circumventing GS

Randomness and approximation

Incomplete information

Computational complexity

Circumvent GS: Money

- Mechanism's goal was to output an allocation (mapping of items to agents)
- Set of alternatives $A=$ \{all possible allocations $\}$
- Agents have preferences over allocation (their own, or in general over all)
- Agents "vote" (express their preferences) by bidding on allocations
- Similarities: Myerson proved strategyproof iff monotone allocation wrt bids
- Design strategyproof mechanisms by charging appropriate payments
- Similarly, if money or transfer is possible in some voting applications, can circumvent GS using mechanisms similar to VCG

Circumvent GS: Restricted Preferences

- In matching mechanisms from last week, we did not have money
- We were able to design strategyproof mechanisms for one-sided matching
- Preferences of agents were restricted
- Did not have preferences over all possible matchings
- Just care about their own match
- There are other ways we can restrict preferences
- Most common restriction on preferences considered in the voting landscape:
- Single-peaked preferences

Single-Peaked Preferences

- Imagine that the candidates are points on a real line
- Line could represent the political spectrum
- A voter i has single-peaked preferences if there is a "peak" $p_{i} \in \mathbb{R}$ such that the voters prefers candidates closer to her peak
- Idea is that single-peaked preferences are a reasonable approximation of voter's preferences

Single-peaked

Not single-peaked

Single-Peaked Preferences

- Imagine that the candidates are points on a real line
- Line could represent the political spectrum
- A voter i has single-peaked preferences if there is a "peak" $p_{i} \in \mathbb{R}$ such that the voters prefers candidates closer to her peak
- Idea is that single-peaked preferences are a reasonable approximation of voter's preferences
- Given single-peaked preferences, how do we select a candidate?
- Average rule?
- Median rule?

Single-peaked

- Turns out, median voter rule is individual and group strategyproof and satisfies the Condorcet criterion

