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Announcements and Logistics

e \Welcome back!

e Homework 6 Is due this Thursday at 11 pm
* Topics from Lecture 11, 12 and 13:
e Competitive equilibrium
* One-sided matching and stable matchings
o Stability definition is different for one-sided & two-sided markets
* Midterm 1 feedback returned March 18
* Median: 90%, Mean: 88%

* |[f you have questions, let me know



Plan for Second Half

Monday Tuesday | Wednesday | Thursday Friday

Week 7 . Voting & Sc|>cial Choice W ¢ due
Week 8 Extensive-form games, SPNE and Repeated games
R | HW 7 due
Week 9 Incentives in Distributed systems |
HW 8 due Project proposal due
| |
Week |0  Midterm 2 Misc Project checkpoint |
|
Week |1 Misc Misc Project checkpoint 2
Week 12 Project presentations: Checkpoint 3

| | |
Finals period Final Project Report Due




Two-Sided Markets: Recap

« Input: A set H of n hospitals, a set § of n students and rankings from each:
 Each hospital ranks all students
 Each student ranks all hospitals

« Goal: Find a perfect matching M (one where each student is matched to exactly one

hospital and vice versa) that is stable (has no blocking pairs)
A hospital & and student s form a blocking pair (%2, s) in a matching M if

« h prefers s to its current match in M, and s prefers h to its current match in M
* Algorithm: Deferred acceptance (DA) by Gale and Shapley
 Each hospital makes offers to their most tavorite that has not rejected them

 Each student holds on the best ofter received and trade up as the algorithm proceeds



Two-Sided Markets: Recap

* Theorem. Gale Shapley outputs a stable matching
* A given instance can have many possible stable matchings

 Lemma. Hospital proposing algorithm is hospital optimal (and student
pessimal.)

« Theorem. Hospital proposing DA algorithm is strategyproof for hospitals but not
for students

o Students can misreport and get a better match!
« Theorem. No mechanism for two-sided matching is both stable and strategyproot.
 Proof developed in Homework 6

 Uses incomplete lists with stability defined analogously



Project ldeas

 [ime to start thinking about what topic you want to do a project on

e Also think about potential project partners and start discussing

 Will share suggested projects but encourage you to explore your interest
» Topics/themes:

« Game theory: evolutionary, sequential games, game theory & Al

 Auctions & mechanism design with money: price of anarchy of
auctions, sponsored search, etc

 Matching markets: T1C, stable matchings, school choice, etc
 Voting: strategic issues, rank aggregation etc

* Distributed systems: Bitlorrent, network routing, blockchains



Today

* Discuss some generalizations of stable matching
o With an eye towards project ideas

* Discuss applications of matching markets to school choice
« Some of thisin HW 6

 Move on to voting theory

* Discuss basic voting algorithms and their properties



Research on Matching Markets




Strategic Behavior in DA

 Jruncation strategy: In
truncate their list at thel
are matched to them

nospital-proposing DA, a student can

" pbest achievable partner and ensure they

 Optimal cheating strategy when complete lists are required?

 How susceptible is the algorithm to manipulation?

e |f the number of stable partners is low, manipulation has

ittle bite

Gale-Shapley Stable Marriage
Problem Revisited: Strategic Issues
and Applications

Chung-Piaw Teo ® Jay Sethuraman ¢ Wee-Peng Tan

Stable Husbands

Donald E. Knuth, Rajeev Motwani, and Boris Pittel
Computer Science Department, Stanford University

Abstract. Suppose n boys and n girls rank each other at random. We show
that any particular girl has at least (5 — €) Inn and at most (1 + €) Inn different
husbands in the set of all Gale/Shapley stable matchings defined by these rank-
ings, with probability approaching 1 as n — oo, if € is any positive constant. The
proof emphasizes general methods that appear to be useful for the analysis of
many other combinatorial algorithms.

Marriage, Honesty, and Stability
Nicole Immorlica* Mohammad Mahdian™*

Abstract

Many centralized two-sided markets form a matching between par-
ticipants by running a stable marriage algorithm. It is a well-known
fact that no matching mechanism based on a stable marriage algo-
rithm can guarantee truthfulness as a dominant strategy for partic-
ipants. However, as we will show in this paper, in a probabilistic
setting where the preference lists of one side of the market are com-
posed of only a constant (independent of the the size of the market)
number of entries, each drawn from an arbitrary distribution, the
number of participants that have more than one stable partner is van-
1shingly small. This proves (and generalizes) a conjecture of Roth
and Peranson [23]. As a corollary of this result, we show that, with
high probability, the truthful strategy is the best response for a given
player when the other players are truthful. We also analyze equilib-
ria of the deferred acceptance stable marriage game. We show that
the game with complete information has an equilibrium in which a
(1—o0(1)) fraction of the strategies are truthful in expectation. In the
more realistic setting of a game of incomplete information, we will
show that the set of truthful strategies form a (14 o(1))-approximate
Bayesian-Nash equilibrium. Our results have implications in many
practical settings and were inspired by the work of Roth and Peran-
son [23] on the National Residency Matching Program.




Stable Matching Generalizations

 Many to one matching:

o Hospitals have a capacity ¢ and can accept that many students

o Stability defined similarly
 Similar deferred acceptance generalizes
 Many results carry over but no longer strategproof even on one side

 No stable matching is strategyproof for hospitals in hospital-proposing DA
e |f graph is general (not bipartite): stable roommates problem

 No stable matching exists!

 Approximately stable matchings are studied



Incomplete Preferences & Ties

* |f preferences are incomplete and no ties:

e Set of unmatched people stays the same in all stable matchings

e Slight moditication of Gale Shapley computes stable matching

 Open: how does size of matching relate to size of preference lists?

e KMQ 2021: Forra
size then matching

ndom matching markets if lists are at least Q(log? n) in

s perfect whp, for o(log” n) size lists, not perfect w.h.p

* Atight bound on size of matching not known even for random markets

* |Incompletions and ties: the problem of finding the max matching is NP hard

e Several approximations studied, best known approximation ratio 1.5

e Most recent (LM 2021 result) shows 1 + 1/e approximation for one-sided ties



Effect of Balance (Competition

o What if there are n hospitals and m < n students?

« [AKL "13] Size of core is a knife edge, and short side enjoys significant
advantage. Follow up [KMQ "217 extends to incomplete lists.
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Many More Recent Results Jan 2022

The Short-Side Advantage in Random Matching Markets

Two-sided matching markets with correlated random Linda Cal * Clayton Thomas '
preferences have few stable pairs
HUGO GIMBERT, Université de Bordeaux, LaBRI, CNRS, F-33400 Talence, France 2 O 2 1
CLAIRE MATHIEU, Université de Paris, IRIF, CNRS, F-75013 Paris, France
SIMON MAURAS, Université de Paris, IRIF, CNRS, F-75013 Paris, France 2021
Tiered Random Matching Markets: Rank Is
Proportional to Popularity
Itai Ashlagi
Department of Management Science and Engineering, Stanford University, CA, USA
In which matching markets does the short side enjoy an advantage?* iashlagi@stanford.edu
Mark Braverman
Department of Computer Science, Princeton University, NJ, USA
Yash Kanoria' Seungki Min? Pengyu Qian® 2021 mbiaverm@cs.princelzon.edu ’
Amin Saberi

Department of Management Science and Engineering, Stanford University, CA, USA
saberi@stanford.edu

Clayton Thomas
Department of Computer Science, Princeton University, NJ, USA
claytont@cs.princeton.edu

2018 Geng Zhao

Department of Computer Science, Stanford University, CA, USA
2 O 2 2 gengz@stanford.edu

Stable matching mechanisms are not obviously

strategy-proof * On Fairness and Stability in Two-Sided Matchings

Gili Karni & 201 9

Itai Ashlag1 . Yannai A. Gonczarowski *¢* Weizmann Institute of Science, Rehovot, Israel
Guy N. Rothblum =

Weizmann Institute of Science, Rehovot, Israel

4 Management Science & Engineering, Stanford University, United States of America
b Einstein Institute of Mathematics, Rachel & Selim Benin School of Computer Science & Engineering, and

the Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Israel Gal Yona = A (1 + 1 /6)-ApprOXimation Algorlthm for M&leum Stable M&tChing Wlth

¢ Microsoft Research, Israel . K .
f Weizmann Institute of Science, Rehovot, Israel

Received 30 July 2017; final version received 14 March 2018; accepted 9 July 2018 One—Sided TieS and Incomplete LiStS*

Chi-Kit Lam C. Gregory Plaxton




Applications to School Choice

* Historically in US, children go to neighborhood schools

* Recently, many cities (NYC, Boston, San Francisco, etc) have adopted school choice
orograms to give families tlexibility and to create competition between schools

 Goals: Pareto efficiency, stability to reduce envy, fairness

 Many mechanism used currently are flawed:

* (Boston choice: Problem 3 on HW ©) is not strategyproof and unfair

 [AS "03] show that up to a quarter of the students ended up being unassigned
 Columbus (OH): essentially a lottery with a short fuse for acceptance
 NYC (90,000+ students applying tfor high school) submit up to 5 applications

 Roughly 30,000 students end up being unassigned and then manually assigned



TTC and Student-Proposing DA

 Boston and NYC have both adopted student-proposing DA

 Downside: when school's preferences are disregarded, outcome can be inefficient!

e HW 6, Problem 4a

e TTC on the other hand is efficient

The Cutoft Structure of Top Trading Cycles in
School Choice*

Jacob D. Leshno Irene Lo!

November 7, 2017

“One of the main barriers to using I TC in practice is the difficulty designers had In
communicating it to parents and school boards. The standard explanation of TTC is an
algorithmic description in terms of sequentially clearing trade cycles, from which it is not
directly apparent how priorities and preferences determine assignment. T his makes 1t difficult
for school boards to evaluate the effects of policy decisions on the T TC assignment and
resulting welfare. It Is also difficult for students to verify they were correctly assigned and be
convinced that the mechanism is strategyproof.”



Takeaway: School Choice

* Active area of research in matching markets

e [ ots of avenue for projects

MINIMIZING JUSTIFIED ENVY IN SCHOOL CHOICE:
THE DESIGN OF NEW ORLEANS' ONEAPP

Atila Abdulkadiroglu
Yeon-Koo Che
Parag A. Pathak

Alvin E. Roth
Olivier Tercieux

ABSTRACT

In 2012, New Orleans Recovery School District (RSD) became the first U.S. district to unify
charter and traditional public school admissions in a single-offer assignment mechanism known
as OneApp. The RSD also became the first district to use a mechanism based on Top Trading
Cycles (TTC) 1n a real-life allocation problem. Since TTC was originally devised for settings in
which agents have endowments, there is no formal rationale for TTC in school choice. In
particular, TTC is a Pareto efficient and strategy-proof mechanism, but so are other mechanisms.
We show that TTC is constrained-optimal in the following sense: TTC minimizes justified envy
among all Pareto efficient and strategy-proof mechanisms when each school has one seat. When
schools have more than one seat, there are multiple possible implementations of TTC. Data from
New Orleans and Boston indicate that there is little difference across these versions of TTC, but
significantly less justified envy compared to a serial dictatorship.

Playing on a Level Field:
Sincere and Sophisticated Players in the Boston
Mechanism with a Coarse Priority Structure

Moshe Babaioff Yannai A. Gonczarowski Assaf Romm*

June 9, 2020

Abstract

Who gains and who loses from a manipulable school-choice mechanism? Study-
ing the outcomes of sincere and sophisticated students under the manipulable
Boston Mechanism as compared with the strategy-proof Deferred Acceptance, we
provide robust “anything-goes” theorems for large random markets with coarse pri-
ority structures. I.e., there are many sincere and sophisticated students who prefer
the Boston Mechanism to Deferred Acceptance, and vice versa. Some populations
may even benefit from being sincere (if also perceived as such). Our findings rec-
oncile qualitative differences between previous theory and known empirical results.
We conclude by studying market forces that can influence the choice between these
mechanisms.

Sincer



Voting and Social Choice




Social Choice

* [n social choice theory, we tocus on the following question:
how to aggregate preferences and make decisions that is representative of the collective

interests of a group of agents
* |ncludes topics like
e Voting to elect a winner or to aggregate preterences and select a ranking
e Participatory democracy: budgeting decisions
e [air division: how to divide indivisible goods tairly (cake-cutting problems)
 No money or transfers involved

 Mechanism design without money



Social Choice: Model

« A setA of alternatives, e.g. different webpages for a search engine to rank or
candidates in an election

« AsetN=1{1,2,...,n} of agents or voters

« Each agenti € N has a strict preference order alternatives: given by a ranked
list L, that agent submits to the mechanism

 No guarantee of truthful reporting

 Most of what we discuss can be extended to handle non-strict preference orders
or truncated preferences orders:

* We stick to complete strictly ranked lists for simplicity

* \oting rules can have two forms: either output is a single alternative (the
‘winner”) or a full ranked list



Voting Rules

* Social-choice function selects a single alternative for a given preferences
profile, that is, Ly, L,, ..., L.+ a™ where a* € A

» Selecting a winner in an election

« Social-ranking function selections a rank order of alternatives for a given
preference profile, thatis, L, L,, ..., L, = L* where L* is a ranking of A

e Sometimes also referred to as a social-welfare function
 Computing ranking of job candidates

 Rank aggregation in crowdsourcing applications



Voting vs Matchings

 Similarity: Each participant submits a ranked preferences list and the
mechanism choose an outcome

 Alternative set A in matching problems: set of all possible matchings
 How is the mechanism design problem of matching different from voting”
* Social choice framework is general enough to capture matching markets

 Matching problems had additional "nice structure™: agents only cared
about their own allocation, not others

* |n contrast, in an election the outcome affects everyone

e Turns out that such a restriction on the possible preferences is key to
designing strategyproof mechanisms!



Common Voting Algorithms



Majority Voting

. Suppose there are only two alternates (|A | = 2)

 An obvious voting rule is majority vote:

 Elect the alternative that appears first in the largest number
of voters' lists (to avoid ties say n is odd)

* |f outputting a ranking, output the most preferred candidate
followed by the second

e |s this majority rule strategyproot?
« Suppose your preference is a > b and you submit b > a
« Can only cause the less favored candidate b to be chosen

* |sthe story so simple for more than two alternatives?



Plurality Rule

» Suppose there are at least three alternatives (|A | > 3)

e Suppose we care only about electing a winner, what is the analog
of majority rule”?

* |t some candidate appears first in more than halt of the voters'
Ist, then it is clear that she should be the winner

* However with 3 or more candidates, this may not occur
. E.g., youmay geta40/35/25 split

* |[n most countries (including US), you use the plurality rule: elect
the candidate with the most first-place votes

* Thus, all voters only need to give their 1st preterence

* Questions. Is this a good voting rule? Is it strategyproof?



2000 US Presidential Election

* To consider the problems with plurality rule, we look back to the 2000 US
Presidential election (Bush vs. Gore)

 The race was very close and the outcome came down to the state of Florida

* Final vote tallies in FL (ignoring other candidates): Candidate Party Vote Total
» Only a 500 vote difference between Bush and Gore Bush Republican | 2,912,790

| | Gore Democrat | 2,912,253
e |tis generally assumed that most voters who viewed Nader Creen 07 488

Nader as their 1st choice, preferred Gore to Bush

 Nader was a "spoiler’ candidate: his presence tlipped the election result

even though he couldn't possibly have won The Presidential

 This example also shows why plurality rule is not strategyproof

Election of 2000

LRl

 (Can you see why”




Plurality Rule Pathologies

 For winner selection, plurality tends to be biased towards
‘extreme candidates’

e [or exarr

very simi

ple, suppose there are 10 'mainstrea

Mm" candidates (all

ar viewpoints) and 1 "extreme candic

ate’

 Suppose 90% of the voters prefer a mainstream candidate
to the extreme candidate, 10% preter the extreme choice

* |f the mainstream candidates manage to split the 90% of

* This makes the extreme candidate the win
N "pairwise’ comparisons, the person wou

the vote equally, they each get 9% of first-place votes

ner, even though
d never win

* This is the reason voting theorists are not a fan of Plurality rule



Fairness Criterion: Condorcet



Condorcet Criterion

. An alternate a beats b if a majority of voters prefer a to b in a pairwise comparison
 Condorcet winner: an alternative that defeats every other alternative

« A social choice function f satisfies the Condorcet criterion (is Condorcet
consistent) if f selects a Condorcet winner (whenever one exists)

 Does a Condorcet winner always exist”

« Consider A = {a, b, c} and following ballots:
o \oter1: a,b,c, Voter2: b,c,a, Voter 3: c,a, b
« b defeats c, ¢ defeats a, and a defeats b

 (Considered to be a fairness criterion in voting theory

* Plurality does not satisty Condorcet criterion !



Ranked-Choice Voting
YES

* Alternative to plurality: also called single-transferable vote @ N z
(STV) or instant-runoff voting el AU

&he New Hork Eimes

After New York Tests a New Way of
Voting, Other Cities May Do the Same

Elected leaders and voters in New York remain split over the

ranked-choice system, but officials in Washington and elsewhere
like the results.

Che New Hork Times

THE MORNING NEWSLETTER

A Guide to Ranked-Choice Voting

The New York mayor’s race is the latest example of a ranked-

choice election. We offer a strategic explainer.

RCV implemented [J RCV adopted No RCV [l November 2020 initiative

Source: https://www.southcoasttoday.com/news/20201003/in-massachusetts-yes-on-2-pitches-ranked-choice-voting



Ranked-Choice Voting

» Alternative to plurality: also called single-transterable vote (STV) or instant-
runoff voting

* Voters submit a full ranked list (not just their first choice)

 (Majority rule) If there is some alternative a™ that receives more than 50% of
the first-place voters, then a* is the winner

 (Otherwise, the alternative with the fewest first-place votes is deleted and the
winner is computed recursively on the rest

 Base case: only two alternatives left, use majority rule
 Notice that this rule i1s not biased towards "extreme candidates”

* Various tie-breaking rules used in case of ties



Ranked-Choice Voting

» For example, consider A = {1,2,3,4} and 5 voters s.t.

Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice d a d
3rd choice C d b
4th choice b C a
Which alternative is eliminated in round 17
 d: has zero first-place votes
Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice C a b
3rd choice b C a




Ranked-Choice Voting

After ¢ Is eliminated in round 2:

Voters #1,2 | Voters #3,4,5
1st Choice a b
2nd choice b

Condorcet winner?

s this rule strategyprooft?

a is eliminated in round 3, so b wins

Should we be happy with this outcome?

Can we see this in our example?

Voters #1,2 | Voters #3,4 | Voter #5
1st Choice a b C
2nd choice d a d
3rd choice C d b
4th choice b C a




Ranked-Choice Voting

 Ranked-choice voting is not strategyproof

* Intuition: there can be an incentive to influence
who gets eliminated early on, so that your
oreferred candidate gets more favored

matchups In later rounds Single transferable vote resists strategic voting

John J. Bartholdi III' and James B. Orlin?
! School of Industrial and Systems Engineering, Georgia Institute of Technology,

 Compared to plurality, it seems trickier to figure
Atlanta, GA 30332, USA

OUt a p rOﬂtab | e manl pu | atIOﬂ ?Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Received December 24, 1990 / Accepted May 12, 1991

* |nfact, even it you know everyone else's

vote ; th e p 10 b | em Of fl M d 1N 9 d p rOf |tab | e Abstract. We give evidence that Single Tranferable Vote (STV) is computationally
: : : resistant to manipulation: It is NP-complete to determine whether there exists a
Mmanipu lation 1S NP hard (possibly insincere) preference that will elect a favored candiate, even in an

election for a single seat. Thus strategic voting under STV is qualitatively more
difficult than under other commonly-used voting schemes. Furthermore, this

® T”]is iS Why maﬂy Votiﬂg theQriStS prefer ran ked— resistance to manipulation is inherent to STV and does not depend on hopeful
. _ extraneous assumptions like the presumed difficulty of learning the preferences
cholce VOfil r‘]g of the other voters. We also prove that it is NP-complete to recognize when an

STV election violates monotonicity. This suggests that non-monotonicity in STV
elections might be perceived as less threatening since it is in effect “hidden” and
hard to exploit for strategic advantage.



Digging Deeper

e Since ranked-choice voting is now being used in elections, there is a need to
understand its properties better

 How does it perform under practical (non-worst case) distributions”?

« Random preferences

 Mallow model of generating real world preferences?

e [s it still difficult to find a profitable manipulation®?

 How robust is the voting rule to perturbations”

 NYC Mayoral data is now public and can be used for analysis



Borda Count

 Well known voting rule: often used in sports, also used in Eurovision song contest

. Voters submit their full ranked lists: an alternate gets | A | for each first-choice vote,
|A | — 1 points for each second-choice vote, and so on and 1 point for each last-

choice vote

e Example;
« a gets 15 points, b gets 12 points Voters #1,2 | Voters #3.4 | Voter #5
| | 1st Choice a b C
« ¢ gets 10 points, d gets 13 points ond choice J , J
« Borda count would elect a 3rd choice C d b
4th choice b C a

« In contrast to ranked-choice b

e |s Borda count Cordorcet consistent”? Show in HW 7.



Positional Scoring Rules

In general, you can have different ways to score each position

. For each vote, a positional-scoring ruleonm = |A
alternatives assigns a score of @; to the alternative ranked in Jth

place. The alternative with maximum total score (across all
votes) is selected.

« Assumea; 2o, 2 ..., anda; > a,,

« E.g., plurality gives 1 point for first-choice, zero for others

 Many positional scoring rules have been studied

* You might see some on the homework/ papers you read



Borda Count

* |s Borda count strategyproof?

* |dea: incentive to rank closest competitor to preterred
candidate |last

« In example, what is the Borda score of a and b?
e asscore:2-3+4+4=10
e bsscore:2*4+3 =11

. |f voter 3 moves b to the last place

e b'sscore:8+1=9




Strategyproof Voting

 There are some trivial strategy proof voting rules:

« A voting rule is dictatorial if it has dictator voter 1 and always

elects 1's first choice (regardless of others' preferences)
 Defeats the purpose of voting

 Are there any “reasonable” strategy proof voting rules?



Strategyproof Voting

Changing the voting rule changes the outcome of the

mechanism

Leads to contention on which voting rule is the “best”

A desirab
mechanis

e proper

'y that everyone wants out of voting

mM: inability to manipulate the outcome

 We will also see other desirable properties we'd want
from a voting mechanism

None of the voting rules we have seen are strategy proot

Are we just not being smart enough or is there is a barrier to
achieving this property?



Gibbard-Satterthwaite &
Arrow's Impossibility Theorems




Impossibility Result

* Gibbard-Satterthwaite theorem.
Any voting/social-choice rule with at least 3 alternatives that is strategyproof
and onto must be dictatorial.

 We will prove this next lecture

* "The G5 theorem seems to quash any hope of designing incentive-compatible social-choice
functions. The whole field of Mechanism Design attempts escaping from this impossibility result

using various modifications.”. Nisan
« How AGT escapes this sweeping impossibility:
* Restricting what preference lists are possible (e.g. matching markets)

* Money! Thats why we focused so much on mechanism design with money



Arrow’s Impossibility Theorem

 The GS theorem is closely related to and can be derived from an
even more famous impossibility result: Arrow's theorem

 Arrow's impossibility theorem. \With three or more alternatives, no
soclal-rank function satisties the tollowing three properties:

 Non-dictatorship
 Unanimity
* [ndependence of irrelevant alternatives (l1A)

« Unanimity means if every voter ranks a over b, then the social-rank
function should rank a over b

Plurality does not satisty [IA
 |IA means that, for every pair a, b of alternatives, the relative order of (e.g, Bush vs Gore outcome

. . . ffected by Nad
a over b in the output ranking should be a function of only the was affected by Nader)
relative order of a, b in each voter's list and not depend on the

position of any "irrelevant’ alternative ¢ in anyone's preferences




Arrow’s and GS

 One can also derive the Gibbard-satterthwaite theorem from
Arrow's theorem, using a reduction argument

* Suppose we have a non-trivial and strategyproof voting rule

Use it to construct a a voting rule that satisfies the three
conditions in Arrow’s theorem

* [ntuitively, not satistying IIA can lead to opportunities for strategic

manipulation

e You also need to ensure technicalities like Arrow’s theorem is a

.:u
.:u

| ran

NCtio

result about social-ranking functions (voting rules that produce a

ked list) while the GS theorem holds even for social choice

NS (voting rules that elect a winner)



Single-Peaked Preferences

e Just like computational hardness forces us to compromise our goals
(find approximation algorithms, focus on special cases),
impossibility results in voting theory force us to be creative

 Most common restriction on preferences considered in the voting
landscape:

* Single-peaked preferences
* Imagine that the candidates are points on a real line
 Line could represent the political spectrum

« A voter 1 has single-peaked preferences if there is a “peak” p; € R
such that the voters prefers candidates closer to her peak

* |dea is that single-peaked preferences are a reasonable
approximation of voter's preferences



Single-Peaked

 Imagine that the candidates are
 Line could represent the po

« A voter I has single-peaked pre

Preferences

points on a real line
itical spectrum

‘erences If there is a “peak”

p; € R such that the voters pre

‘ers candidates closer to her peak

 @Given single-peaked preferences, how do we select a candidate”

* Average rule?

e Median rule?

* [ndividual and group strategyproof!

 Median rule is also Pareto optimal and satisfies the Condorcet

criterion (will discuss this soon)

med 1an
O\C; 0
o<, e
/ E 0
° 0 \
O/ : o O
\o
| : : |
Q b & S

Single-peaked preferences

0
0 0
O 0
0
0
o) 0

Q. U C

Not single-peaked



Hardness of Manipulation

Ng out whether there is a profitable manipulation is

—lgur
iNntrac

able for

comp

ranked-choice voting (even in the presence of

ete information)

e However, this result holds when the number of alternatives
grow (in contrast to voters)

Unfortunately, NP-hardness just says it is hard for some worst-

Ccase

INnstance

S

What it it is actually easy for most practical instances?

Many

fixed #alterna

rules admit polynomial time manipulation algorithms for

ves

Many rules admit polynomial time algorithms that find a
successtul manipulation on almost all profiles!



Hardness of Manipulation

manipulate on average

Interesting open problem to design voting rules that are hard to

* \Very nice and readable article about manipulation in voting (on

GLOW)

Al’'s War on Manipulation:
Are We Winning?

Piotr Faliszewski and Ariel D. Procaccia

"The most controversial part of the approach is
that 1t relies on NP-hardness as a measure of
computational difficulty. The issue is that NP-
hardness Is a worst-case notion and the fact
that a problem i1s NP-hard simply means that it
has some dif]cult instances and not that
necessarily the ones typically occurring in
practice are hard to solve.”



Approximate Approaches

* [nthe vein of approximate solutions in algorithms, one can try to relax
the strategyproofness conditions

 Consider 'milder" notions of incentive compatibility

Approximate Strategyproofness

Benjamin Lubin David C. Parkes
School of Management School of Engineering and Applied Sciences
Boston University Harvard University
blubin@bu.edu parkes@eecs.harvard.edu

July 24, 2012

Abstract

The standard approach of mechanism design theory insists on equilibrium behavior by par-
ticipants. This assumption is captured by imposing incentive constraints on the design space.
But in bridging from theory to practice, it often becomes necessary to relax incentive constraints
in order to allow tradeoffs with other desirable properties. This paper surveys a number of dif-
ferent options that can be adopted in relaxing incentive constraints, providing a current view of
the state-of-the-art.




