
CSCI 357:  Algorithmic Game Theory 
Lecture 14:  Voting & Social Choice 1 

Shikha Singh



• Welcome back!  

• Homework 6 is due this Thursday at 11 pm 

• Topics from Lecture 11, 12 and 13: 

• Competitive equilibrium 

• One-sided matching and stable matchings 

• Stability definition is different for one-sided & two-sided markets 

• Midterm 1 feedback returned March 18 

• Median:  90%,  Mean:  88% 

• If you have questions, let me know

Announcements and Logistics

Questions?



Plan for Second Half

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Voting & Social Choice HW 6 due

Extensive-form games, SPNE and Repeated games

HW 7 dueIncentives in Distributed systems 
HW 8 due

Midterm 2

Project proposal due

Misc

Misc Project checkpoint 1

Misc

Final Project Report Due

Project presentations:  Checkpoint 3

Finals period

Project checkpoint 2



Two-Sided Markets:  Recap
• Input:  A set  of  hospitals, a set  of  students and rankings from each:  

• Each hospital ranks all students 

• Each student ranks all hospitals 

• Goal:  Find a perfect matching  (one where each student is matched to exactly one 
hospital and vice versa) that is stable (has no blocking pairs) 

• A hospital  and student  form a blocking pair   in a matching  if 

•  prefers  to its current match in , and  prefers  to its current match in  

• Algorithm:  Deferred acceptance (DA) by Gale and Shapley  

• Each hospital makes offers to their most favorite that has not rejected them 

• Each student holds on the best offer received and trade up as the algorithm proceeds
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• Theorem.  Gale Shapley outputs a stable matching 

• A given instance can have many possible stable matchings 

• Lemma. Hospital proposing algorithm is hospital optimal (and student 
pessimal.) 

• Theorem.  Hospital proposing DA algorithm is strategyproof for hospitals but not 
for students 

• Students can misreport and get a better match! 

• Theorem.  No mechanism for two-sided matching is both stable and strategyproof. 

• Proof developed in Homework 6 

• Uses incomplete lists with stability defined analogously 

Two-Sided Markets:  Recap



Project Ideas
• Time to start thinking about what topic you want to do a project on 

• Also think about potential project partners and start discussing  

• Will share suggested projects but encourage you to explore your interest  

• Topics/themes: 

• Game theory:  evolutionary, sequential games, game theory & AI 

• Auctions & mechanism design with money:   price of anarchy of 
auctions, sponsored search, etc 

• Matching markets:  TTC, stable matchings, school choice, etc 

• Voting:  strategic issues, rank aggregation etc 

• Distributed systems:  BitTorrent, network routing, blockchains



Today
• Discuss some generalizations of stable matching 

• With an eye towards project ideas 

• Discuss applications of matching markets to school choice 

• Some of this in HW 6 

• Move on to voting theory  

• Discuss basic voting algorithms and their properties



Research on Matching Markets



Strategic Behavior in DA
• Truncation strategy:  in hospital-proposing DA, a student can 

truncate their list at their best achievable partner and ensure they 
are matched to them 

• Optimal cheating strategy when complete lists are required? 

• How susceptible is the algorithm to manipulation? 

• If the number of stable partners is low, manipulation has 
little bite



Stable Matching Generalizations 
• Many to one matching:  

• Hospitals have a capacity  and can accept that many students 

• Stability defined similarly  

• Similar deferred acceptance generalizes 

• Many results carry over but no longer strategproof even on one side 

• No stable matching is strategyproof for hospitals in hospital-proposing DA 

• If graph is general (not bipartite):  stable roommates problem 

• No stable matching exists! 

• Approximately stable matchings are studied

c



Incomplete Preferences & Ties
• If preferences are incomplete and no ties: 

• Set of unmatched people stays the same in all stable matchings 

• Slight modification of Gale Shapley computes stable matching 

• Open:  how does size of matching relate to size of preference lists? 

• KMQ 2021:  For random matching markets if lists are at least  in 
size then matching is perfect whp, for  size lists, not perfect w.h.p 

• A tight bound on size of matching not known even for random markets 

• Incompletions and ties: the problem of finding the max matching is NP hard 

• Several approximations studied, best known approximation ratio 1.5 

• Most recent (LM 2021 result) shows  approximation for one-sided ties

Ω(log2 n)
o(log2 n)

1 + 1/e



Effect of Balance (Competition)
• What if there are  hospitals and  students? 

• [AKL '13] Size of core is a knife edge, and short side enjoys significant 
advantage.  Follow up [KMQ '21] extends to incomplete lists.

n m < n



Many More Recent Results
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Applications to School Choice
• Historically in US, children go to neighborhood schools 

• Recently, many cities (NYC, Boston, San Francisco, etc) have adopted school choice 
programs to give families flexibility and to create competition between schools 

• Goals: Pareto efficiency, stability to reduce envy, fairness  

• Many mechanism used currently are flawed: 

• (Boston choice: Problem 3 on HW 6) is not strategyproof and unfair 

• [AS '03] show that up to a quarter of the students ended up being unassigned 

• Columbus (OH): essentially a lottery with a short fuse for acceptance 

• NYC (90,000+ students applying for high school) submit up to 5 applications 

• Roughly 30,000 students end up being unassigned and then manually assigned



TTC and Student-Proposing DA
• Boston and NYC have both adopted student-proposing DA 

• Downside:  when school's preferences are disregarded, outcome can be inefficient! 

• HW 6, Problem 4a  

• TTC on the other hand is efficient 

“One of the main barriers to using TTC in practice is the difficulty designers had in 
communicating it to parents and school boards.  The standard explanation of TTC is an 
algorithmic description in terms of sequentially clearing trade cycles, from which it is not 
directly apparent how priorities and preferences determine assignment. This makes it difficult 
for school boards to evaluate the effects of policy decisions on the TTC assignment and 
resulting welfare. It is also difficult for students to verify they were correctly assigned and be 
convinced that the mechanism is strategyproof.”



Takeaway:  School Choice
• Active area of research in matching markets 

• Lots of avenue for projects



Voting and Social Choice



Social Choice
• In social choice theory, we focus on the following question:  

how to aggregate preferences and make decisions that is representative of the collective 
interests of a group of agents

• Includes topics like 

• Voting to elect a winner or to aggregate preferences and select a ranking 

• Participatory democracy:  budgeting decisions  

• Fair division:  how to divide indivisible goods fairly (cake-cutting problems) 

• No money or transfers involved 

• Mechanism design without money



Social Choice: Model 
• A set  of alternatives, e.g. different webpages for a search engine to rank or 

candidates in an election 

• A set  of agents or voters 

• Each agent  has a strict preference order alternatives: given by a ranked 
list  that agent submits to the mechanism   

• No guarantee of truthful reporting 

• Most of what we discuss can be extended to handle non-strict preference orders 
or truncated preferences orders: 

• We stick to complete strictly ranked lists for simplicity  

• Voting rules can have two forms:  either output is a single alternative (the 
“winner”) or a full ranked list

A

N = {1,2,…, n}

i ∈ N
Li



Voting Rules
• Social-choice function selects a single alternative for a given preferences 

profile, that is,  where  

• Selecting a winner in an election 

• Social-ranking function selections a rank order of alternatives for a given 
preference profile, that is,  where  is a ranking of  

• Sometimes also referred to as a social-welfare function 

• Computing ranking of job candidates 

• Rank aggregation in crowdsourcing applications

L1, L2, …, Ln ↦ a* a* ∈ A

L1, L2, …, Ln ↦ L* L* A



Voting vs Matchings
• Similarity:   Each participant submits a ranked preferences list and the 

mechanism choose an outcome  

• Alternative set  in matching problems:  set of all possible matchings  

• How is the mechanism design problem of matching different from voting? 

• Social choice framework is general enough to capture matching markets 

• Matching problems had additional "nice structure":  agents only cared 
about their own allocation, not others 

• In contrast, in an election the outcome affects everyone  

• Turns out that such a restriction on the possible preferences is key to 
designing strategyproof mechanisms!

A



Common Voting Algorithms



Majority Voting
• Suppose there are only two alternates ( ) 

• An obvious voting rule is majority vote: 

• Elect the alternative that appears first in the largest number 
of voters' lists (to avoid ties say  is odd) 

• If outputting a ranking, output the most preferred candidate 
followed by the second 

• Is this majority rule strategyproof? 

• Suppose your preference is  and you submit  

• Can only cause the less favored candidate  to be chosen 

• Is the story so simple for more than two alternatives?

|A | = 2

n

a ≻ b b ≻ a

b



Plurality Rule
• Suppose there are at least three alternatives ( ) 

• Suppose we care only about electing a winner, what is the analog 
of majority rule?  

• If some candidate appears first in more than half of the voters' 
list, then it is clear that she should be the winner 

• However with 3 or more candidates, this may not occur 

• E.g., you may get a  split 

• In most countries (including US), you use the plurality rule:  elect 
the candidate with the most first-place votes  

• Thus, all voters only need to give their 1st preference 

• Questions. Is this a good voting rule? Is it strategyproof?

|A | ≥ 3

40/35/25



2000 US Presidential Election 
• To consider the problems with plurality rule, we look back to the 2000 US 

Presidential election (Bush vs. Gore) 

• The race was very close and the outcome came down to the state of Florida 

• Final vote tallies in FL (ignoring other candidates): 

• Only a 500 vote difference between Bush and Gore 

• It is generally assumed that most voters who viewed  
Nader as their 1st choice, preferred Gore to Bush 

• Nader was a "spoiler" candidate: his presence flipped the election result 
even though he couldn't possibly have won 

• This example also shows why plurality rule is not strategyproof 

• Can you see why? 



Plurality Rule Pathologies
• For winner selection, plurality tends to be biased towards 

"extreme candidates" 

• For example, suppose there are 10 "mainstream" candidates (all 
very similar viewpoints) and 1 "extreme candidate" 

• Suppose 90% of the voters prefer a mainstream candidate 
to the extreme candidate, 10% prefer the extreme choice 

• If the mainstream candidates manage to split the 90% of 
the vote equally, they each get 9% of first-place votes 

• This makes the extreme candidate the winner, even though 
in "pairwise" comparisons, the person would never win 

• This is the reason voting theorists are not a fan of Plurality rule



Fairness Criterion:  Condorcet 



Condorcet Criterion
• An alternate  beats  if a majority of voters prefer  to  in a pairwise comparison 

• Condorcet winner:  an alternative that defeats every other alternative 

• A social choice function  satisfies the Condorcet criterion (is Condorcet 
consistent) if  selects a Condorcet winner (whenever one exists) 

• Does a Condorcet winner always exist? 

• Consider  and following ballots:  

• Voter 1:  ,  Voter 2:  , Voter 3:  

•  defeats ,  defeats , and  defeats  

• Considered to be a fairness criterion in voting theory 

• Plurality does not satisfy Condorcet criterion !

a b a b

f
f

A = {a, b, c}

a, b, c b, c, a c, a, b

b c c a a b



Ranked-Choice Voting
• Alternative to plurality:  also called single-transferable vote 

(STV) or instant-runoff voting

Source: https://www.southcoasttoday.com/news/20201003/in-massachusetts-yes-on-2-pitches-ranked-choice-voting



Ranked-Choice Voting
• Alternative to plurality:  also called single-transferable vote (STV) or instant-

runoff voting 

• Voters submit a full ranked list (not just their first choice) 

• (Majority rule) If there is some alternative  that receives more than 50% of 
the first-place voters, then  is the winner 

• Otherwise, the alternative with the fewest first-place votes is deleted and the 
winner is computed recursively on the rest 

• Base case:  only two alternatives left, use majority rule 

• Notice that this rule is not biased towards "extreme candidates" 

• Various tie-breaking rules used in case of ties

a*
a*



Ranked-Choice Voting
• For example, consider  and 5 voters s.t. 

 
 
 
 

• Which alternative is eliminated in round 1? 

• : has zero first-place votes

A = {1,2,3,4}

d



Ranked-Choice Voting
• After  is eliminated in round 2: 

 
 
 

•  is eliminated in round 3, so  wins 

• Should we be happy with this outcome? 

• Condorcet winner? 

• Is this rule strategyproof? 

• Can we see this in our example?

c

a b



Ranked-Choice Voting
• Ranked-choice voting is not strategyproof 

• Intuition:  there can be an incentive to influence 
who gets eliminated early on, so that your 
preferred candidate gets more favored 
matchups in later rounds 

• Compared to plurality, it seems trickier to figure 
out a profitable manipulation  

• In fact, even if you know everyone else's 
vote, the problem of finding a profitable 
manipulation is NP hard  

• This is why many voting theorists prefer ranked-
choice voting 



Digging Deeper
• Since ranked-choice voting is now being used in elections, there is a need to 

understand its properties better  

• How does it perform under practical (non-worst case) distributions? 

• Random preferences 

• Mallow model of generating real world preferences? 

• Is it still difficult to find a profitable manipulation? 

• How robust is the voting rule to perturbations?  

• NYC Mayoral data is now public and can be used for analysis



Borda Count
• Well known voting rule:  often used in sports, also used in Eurovision song contest 

• Voters submit their full ranked lists: an alternate gets for each first-choice vote, 
 points for each second-choice vote, and so on and  point for each last-

choice vote 

• Example:  

•  gets  points,  gets  points 

•  gets  points,  gets  points 

• Borda count would elect   

• In contrast to ranked-choice  

• Is Borda count Cordorcet consistent? Show in HW 7.

|A |
|A | − 1 1

a 15 b 12

c 10 d 13

a

b



Positional Scoring Rules
• In general, you can have different ways to score each position  

• For each vote, a positional-scoring rule on  
alternatives assigns a score of  to the alternative ranked in th 
place. The alternative with maximum total score (across all 
votes) is selected. 

• Assume  and  

• E.g., plurality gives  point for first-choice, zero for others 

• Many positional scoring rules have been studied 

• You might see some on the homework/ papers you read

m = |A |
αj j

α1 ≥ α2 ≥ …αm α1 > αm

1



• Is Borda count strategyproof? 

• Idea: incentive to rank closest competitor to preferred 
candidate last 

• In example, what is the Borda score of  and ? 

• ’s score:  

• ’s score:   

• If voter  moves  to the last place 

• s score: 

a b

a 2 ⋅ 3 + 4 = 10

b 2 * 4 + 3 = 11

3 b

b′ 8 + 1 = 9

Borda Count



Strategyproof Voting
• There are some trivial strategy proof voting rules: 

• A voting rule is dictatorial if it has dictator voter  and always 
elects 's first choice (regardless of others' preferences) 

• Defeats the purpose of voting 

• Are there any “reasonable” strategy proof voting rules?

i
i



Strategyproof Voting
• Changing the voting rule changes the outcome of the 

mechanism 

• Leads to contention on which voting rule is the “best” 

• A desirable property that everyone wants out of voting 
mechanism: inability to manipulate the outcome  

• We will also see other desirable properties we’d want 
from a voting mechanism 

• None of the voting rules we have seen are strategy proof 

• Are we just not being smart enough or is there is a barrier to 
achieving this property?



Gibbard-Satterthwaite &  
Arrow's Impossibility Theorems



Impossibility Result
• Gibbard-Satterthwaite theorem.    

Any voting/social-choice rule with at least 3 alternatives that is strategyproof 
and onto must be dictatorial. 

• We will prove this next lecture 

• "The GS theorem seems to quash any hope of designing incentive-compatible social-choice 

functions. The whole field of Mechanism Design attempts escaping from this impossibility result 

using various modifications.":  Nisan 

• How AGT escapes this sweeping impossibility: 

• Restricting what preference lists are possible (e.g. matching markets) 

• Money!   Thats why we focused so much on mechanism design with money



Arrow's Impossibility Theorem
• The GS theorem is closely related to and can be derived from an 

even more famous impossibility result:  Arrow's theorem 

• Arrow's impossibility theorem.  With three or more alternatives, no 
social-rank function satisfies the following three properties: 

• Non-dictatorship 

• Unanimity  

• Independence of irrelevant alternatives (IIA) 

• Unanimity means if every voter ranks  over , then the social-rank 
function should rank  over    

• IIA means that, for every pair  of alternatives, the relative order of 
 over  in the output ranking should be a function of only the 

relative order of  in each voter's list and not depend on the 
position of any "irrelevant" alternative  in anyone's preferences

a b
a b

a, b
a b

a, b
c

Plurality does not satisfy IIA 
(e.g., Bush vs Gore outcome 

was affected by Nader)



Arrow’s and GS
• One can also derive the Gibbard-Satterthwaite theorem from 

Arrow’s theorem, using a reduction argument 

• Suppose we have a non-trivial and strategyproof voting rule 

• Use it to construct a a voting rule that satisfies the three 
conditions in Arrow’s theorem 

• Intuitively, not satisfying IIA can lead to opportunities for strategic 
manipulation 

• You also need to ensure technicalities like Arrow’s theorem is a 
result about social-ranking functions (voting rules that produce a 
full ranked list) while the GS theorem holds even for social choice 
functions (voting rules that elect a winner)



Single-Peaked Preferences
• Just like computational hardness forces us to compromise our goals 

(find approximation algorithms, focus on special cases), 
impossibility results in voting theory force us to be creative 

• Most common restriction on preferences considered in the voting 
landscape:  

• Single-peaked preferences 

• Imagine that the candidates are points on a real line 

• Line could represent the political spectrum 

• A voter  has single-peaked preferences if there is a “peak”  
such that the voters prefers candidates closer to her peak 

• Idea is that single-peaked preferences are a reasonable 
approximation of voter’s preferences

i pi ∈ ℝ



Single-Peaked Preferences
• Imagine that the candidates are points on a real line 

• Line could represent the political spectrum 

• A voter  has single-peaked preferences if there is a “peak” 
 such that the voters prefers candidates closer to her peak 

• Given single-peaked preferences, how do we select a candidate? 

• Average rule? 

• Median rule? 

• Individual and group strategyproof! 

• Median rule is also Pareto optimal and satisfies the Condorcet 
criterion (will discuss this soon)

i
pi ∈ ℝ

Single-peaked preferences 

Not single-peaked 



Hardness of Manipulation
• Figuring out whether there is a profitable manipulation is 

intractable for ranked-choice voting (even in the presence of 
complete information) 

• However, this result holds when the number of alternatives 
grow (in contrast to voters) 

• Unfortunately, NP-hardness just says it is hard for some worst-
case instances 

• What if it is actually easy for most practical instances? 

• Many rules admit polynomial time manipulation algorithms for 
fixed #alternatives 

• Many rules admit polynomial time algorithms that find a 
successful manipulation on almost all profiles!



Hardness of Manipulation
• Interesting open problem to design voting rules that are hard to 

manipulate on average 

• Very nice and readable article about manipulation in voting (on 
GLOW)

"The most controversial part of the approach is 
that it relies on NP-hardness as a measure of 
computational difficulty. The issue is that NP-
hardness is a worst-case notion and the fact 
that a problem is NP-hard simply means that it 
has some dif]cult instances and not that 
necessarily the ones typically occurring in 
practice are hard to solve. "



Approximate Approaches
• In the vein of approximate solutions in algorithms, one can try to relax 

the strategyproofness conditions  

• Consider "milder" notions of incentive compatibility  


