CSCI 357: Algorithmic Game Theory

Lecture I2: One-Sided Matching (without Money) Shikha Singh

Announcements and Logistics

- No HW due this week
- Only 4 days to Spring Break!
- HW 4 budget agent competition results are in!
- Will announce at the end of class given we have time
- HW 6 will be on the topics: Lectures 11-13
- Will be released this week but due after you return from break
- Regular assignment length, single person
- Due Thursday April 7
- TA feedback form: will post on Slack, please fill by end of the week

Questions?

Last Time

- Decentralized matching market:
- n buyers, $m \geq n$ items
- Goal: Match buyers to items and find a price vector $\left(p_{1}, \ldots, p_{m}\right)$ s.t.:
- Matching is envy free
- Market is cleared: no item with positive price (any demand) remains unmatched
- These are matched market-clearing prices
- Competitive equilibrium: (M, \mathbf{p})
- We created an ascending price auction show a competitive eq exists
- Proved an invariant that every item with non-zero price is always matched
- Means when algorithm terminates we have market-clearing prices!

Today

Week 6: Matching Markets w/o Money

- Prove that the ascending price auction terminates
- Move on to mechanism design without money:
- Start with matching markets without money
- One-sided markets today

Week 5: Matching Markets w Money

Week 4: Bayesian Analysis \& General Mechanism Design

Week 3:Application : Sponsored Ad Markets

Week 2: DSIC Auctions

Week I: Game Theory

Ascending-Price Algorithm

- Start with prices of all items $p_{j}=0$, assume all valuations $v_{j i} \in \mathbb{Z}$
- Step 1. Check if there is a buyer-perfect matching in preferred item graph
- Step 2. Else, there must a constricted set:
- There exists $S \subseteq\{1, \ldots, n\}$ such that $|S|>|N(S)|$
- $N(S)$ are items that are over-demanded
- If there are multiple such sets, choose the minimal set $N(S)$
- Increase $p_{j} \leftarrow p_{j}+1$ for all items in the set $j \in N(S)$
- Go back to Step 1.
- Invariant: if an item has non-zero cost, that item is tentatively matched to some buyer: $p_{j}>0 \Longrightarrow \exists i:(j, i) \in M$

Ascending-Price Algorithm

- Invariant: if an item has non-zero cost, that item is tentatively matched to some buyer: $p_{j}>0 \Longrightarrow \exists i:(j, i) \in M$
- Final question:
- Does this algorithm ever terminate?
- Intuition: Since items are always tentatively matched, prices cannot rise for forever, why?
- At some point, no buyer would want the items!

Proving Our Algorithm Terminates

- Theorem. The ascending price auction terminates.
- Proof. Show that algorithm starts with a certain amount of "potential energy" which goes down by at least 1 in each iteration
- Let the potential of any round be defined as:

$$
E=\sum_{\text {items } j} p_{j}+\sum_{\text {buyers } i} u_{j}^{*}
$$

- where p_{j} is the price of item j in that round and u_{i}^{*} is the maximum utility i can obtain given prices \mathbf{p} in that round

Proving Our Algorithm Terminates

- Theorem. The ascending price auction terminates.
- Proof.

$$
E=\sum_{\text {items }_{j}} p_{j}+\sum_{\text {buyers } i} u_{j}^{*}
$$

- At the the beginning, all prices are zero and $u_{i}^{*}=\max _{j} v_{i j}$
- Thus, before the auctions starts $E_{0}=\sum_{i} \max _{j} v_{i j}{ }^{\text {- To wrap up proof, we show }} 1$
- Potential can never be negative $E \geq 0$
- Potential at each step goes down by at least 1
- Thus, in E_{0} steps the algorithm terminates.

Proving Our Algorithm Terminates

- Lemma: Potential energy E is always non-negative.
- Proof.

$$
E=\sum_{\text {items } j} p_{j}+\sum_{\text {buyers } i} u_{j}^{*}
$$

- If there is at least one item with price 0 then $u_{j}^{*} \geq 0$
- Why is this true? Use our invariant!
- Every non-zero priced item is matched, thus when $n-1$ items are matched, no need to raise the price of nth item
- Since prices are always are always nonnegative $E \geq 0$

Proving Our Algorithm Terminates

- Claim. Potential E goes down by at least one each step.
- Proof. At each step, we raise the price of all items in $N(S)$, how

$$
E=\sum_{\text {items } j} p_{j}+\sum_{\text {buyers } i} u_{j}^{*}
$$ much does it increase the first term in E ?

- $|N(S)|$
- However, the value of u_{i}^{*} goes down by one for each node in S,
how much does this decrease the second term in E ?
- $|S|$
- Since $|N(S)|<|S|$, then potential decreases by at least 1
- Thus, the algorithm must terminate in E_{0} steps
- Our ascending auction terminates at market clearing prices!

VCG Prices vs Market-Clearing

- VCG prices set centrally: ask each buyer to report their valuation and charge each buyer a "personalized price" for their allocation
- VCG prices are only set after a matching has been determined (the matching that maximizes total valuation of the buyers)
- Not just about the item itself, but who gets the item
- Market-clearing prices are "posted prices" at which buyers are free to pick whatever item they like
- prices are chosen first and posted on the item
- Prices cause certain buyers to select certain items leading to a matching

Applying VCG

Prices

Valuations

$$
12,2,4
$$

Chris

Jing

Applying VCG

Prices

Applying VCG

Prices

Surplus without Zoe: $\mathbf{7 + 7}=\mathbf{1 4}$
Surplus by others when Zoe is present:

$$
\mathbf{6 + 5} \mathbf{=} \mathbf{1 \mathbf { I }}
$$

8, 7, 6

Jing
7, 5, 2

Applying VCG

Zoe
 Valuations

Prices
Surplus without Chris: $\mathbf{1 2 + 5 = 1 7}$
Surplus by others when Chris is
present: 12+5 = $\mathbf{1 7}$
12, 2, 4

Jing
$8,7,6$

7, 5, 2

Applying VCG

Applying VCG

VCG Prices are Market Clearing

- Despite their definition as personalized prices, VCG prices are always market clearing (for the case when each buyer wants a single item)
- Suppose we computed VCG prices for a given matching market
- Then, instead of assigning the VCG allocation and charging the price, we post the prices publicly
- Without requiring buyers to follow the VCG match
- Despite this freedom, each buyer will in fact achieve the highest utility by selecting the item that was allocated by the VCG mechanism!
- Theorem. In any matching market (where each buyer can receive a single item) the VCG prices form the unique set of market clearing prices of minimum total sum.

This is a generalization of the VCG/GSP
result (where valuations are constrained). The general proof is beyond the scope of this course.

General Demand

- Market clearing prices may not exist in combinatorial markets
- Example, suppose our market has two items $\{L, R\}$
- Two buyers Alice and Maya
- Alice wants both $v_{a}(\{L, R\})=5, v_{a}(\{L\})=v_{s}(\{R\})=0$
- Maya wants either, $v_{p}(\{L\})=v_{p}(\{R\})=v_{p}(\{L, R\})=3$
-What's the welfare-maximizing allocation?
- Give both to Alice
- What must the price of each be so that Maya doesn't want it?
- $p(\{L\}) \geq 3, p(\{R\}) \geq 3$
- At a price of ≥ 6 does Alice want it?

Summary

- In a decentralized market with buyers and items, there exists a price \mathbf{p} and matching M which form a competitive equilibrium
- Such an equilibrium can be reached by a simple simultaneous ascending auction that raises the price of "over-demanded" items
- Competitive equilibria are efficient: maximize social welfare and are guaranteed to exist
- Does not extend to combinatorial demands but still useful in practice
- Caveats and direction of current research:
- No sales occur until prices have settled at their equilibrium point
- Coordination required for tie breaks

Competitive Equilibrium Research

- 2016 Article argues that competitive equilibrium's tie breaking requirement can be fairly strong
- Use learning theory to predict buyer's behavior and demand
- Show convergence under such some mild assumptions

Do Prices Coordinate Markets?

Justin Hsu ${ }^{*} \quad$ Jamie Morgenstern ${ }^{\dagger} \quad$ Ryan Rogers

Department of Computer and Information Science University of Pennsylvania USA
justhsu@cis.upenn.edu

Departments of Computer and Information Science and Economics
University of Pennsylvania USA
jamiemmt@cs.cmu.edu

Repartment of Applied Mathematics and Computational Science University of Pennsylvania USA
ryrogers@sas.upenn.edu

Rakesh Vohra
Economics Department University of Pennsylvania USA
rvohra@seas.upenn.edu

Fluctuations in Practice: Research

- In practice, one might imagine that sales are actually happening concurrently with price adjustment
- It turns out, the way buyers and sellers respond to prices in the short-run can dramatically influence prices
- Example. Surge pricing on ride-sharing platforms can be viewed as an attempt to find market-clearing prices
- However, if passengers and drivers respond to prices myopically, the resulting behavior can be erratic
- Recent research in AGT studies dynamic (online) resource allocation problems that take these factors into account

Matching Markets (without Money)

Mechanism Design With Money

Designer's Goal: Allocate items to ensure good global guarantees (e.g. welfare) Agent's Goal: Report private preferences so as to maximize their utility.
n agents with private preferences over items

Multiple items

Mechanism Design With Money

Designer's Goal: Allocate items to ensure good global guarantees (e.g. welfare) Agent's Goal: Report private preferences so as to maximize their utility.

Mechanism Design Without Money

Designer's Goal: Allocate items to ensure good global guarantees Agent's Goal: Report private preferences that achieve the best outcome
n agents with private preferences over items (ordinal)

Multiple items

What are good global guarantees? How to incentivize truthful behavior without money?

Mechanism Design without Money

- Many domains money transfer is either infeasible or inappropriate or illegal
- Problem domains without money?
- Matching students to courses
- Matching students to school/ colleges/ dorms
- Matching doctors to hospitals
- Sharing resources or barter markets:
- Exchanging goods or services
- Social decision making:

Domain of AGT where TCS truly shines!

- Voting to elect a leader, a committee or an outcome

Matching Markets without Money

One Sided Markets

Housing \& Residential Programs

No exchange

Two Sided Markets

Exchange based

One-Sided Matching

Designer's Goal: Allocate items to ensure good global guarantees Agent's Goal: Report private preferences that achieve the best outcome
n students with ordered preferences over dorms

What are good global guarantees? How to incentivize truthful behavior without money?

One-Sided Matching

Designer's Goal: Allocate items to ensure Pareto Optimality
Agent's Goal: Report private preferences that achieve the best outcome
n students with ordered preferences over dorms

Pareto optimality: An outcome O is Pareto optimal if there is no outcome O^{\prime} and where every agent does as well as in O and some agent does strictly better.

Assignment Problems

- One-sided matching problems: called allocation or assignment problems:
- Assigning students to dorms
- Offices to employees
- Tasks to volunteers
- Model. We have n agents and n items
- Agents have strict preference ordering over the items
- Care only about their own allocation, not others
- Feasible assignment: matching between items and agents
- Goal: Find a Pareto optimal assignment (means no other assignment can make an agent better off without making another agent worse off)

One-Sided Matching

Designer's Goal: Assignment of items to agents is Pareto optimal Agent's Goal: Report private preferences that achieve the best outcome

n students with ordered preferences over dorms

College Dorms

Mechanism. Any ideas for algorithms that incentivize truthful behavior?

One-Sided Matching Market

$$
1>3>2
$$

Chris

2

How do we matching students to dorms?

Jing
3

Housing Lotteries

- Most housing allocation algorithms look something like this:
- Asks agents to report their preferences over items
- Choose an ordering of all agents (lottery order)
- Often based on some metrics are considered "fair", e.g., seniority, years of service to college, family size, etc
- Go down the list, assign each agent their favorite item that is still remaining
- Example. Faculty housing lottery at Williams
- This is a good mechanism?
- Strategyproof, Pareto optimal?

Serial Dictatorships (SD)

- Each of the n agents submit a ranked ordering over items
- Each agent is assigned a rank from $\{1,2, \ldots, n\}$
- For $i=1,2, \ldots, n$
- Agent i is assigned their favorite choice among options still available
- Lemma. The serial dictatorship mechanism is strategyproof \& Pareto optimal.
- Why is it strategyproof, that is, why is truthful reporting of preferences a dominant strategy for the agents
- Cannot control lottery order
- Given lottery order, truthful reporting obtains the best possible outcome
- No incentive to deviate (regardless of other's preferences)

Serial Dictatorships (SD)

- Each of the n agents submit a ranked ordering over items
- Each agent is assigned a rank from $\{1,2, \ldots, n\}$
- For $i=1,2, \ldots, n$
- Agent i is assigned their favorite choice among options still available
- Lemma. The serial dictatorship mechanism is strategyproof \& Pareto optimal.
- Why is it Pareto optimal?
- Idea: show no other assignment can Pareto dominate
- That is, does not make anyone better off without making another worse off
- That is, any other assignment must make some agent worse off

Serial Dictatorships (SD)

- Lemma. The serial dictatorship mechanism is strategyproof \& Pareto optimal.
- Let M be the output of SD algorithm. Proof of Pareto-optimality:
- Let M^{\prime} be any assignment where no agent is worse off than in M
- If any agent is worse off in M^{\prime} it cannot Pareto dominate M !
- Claim: Any such M^{\prime} is identical to M, and thus M must be Pareto optimal
- M^{\prime} must give i its favorite item (which M does)
- Suppose M^{\prime} is the same as M until $i=k$
- Consider agent $i=k+1, M$ gives i their favorite among remaining items
- M^{\prime} must do the same to make them not worse off
- Thus M is the unique Pareto optimal outcome

Takeways

- Serial dictatorship seems great: Pareto optimal and strategyproof
- Any criticism?
- Can be unfair when a priority natural order between agents does not exist
- Random-serial-dictatorship (RSD) runs the serial-dictatorship on a ranked ordering that is sampled uniformly at random from all possible ordering
- What happens if we restrict the \# items each agent can rank?
- Happens in course registration (can only preregister for so many courses)
- Truthfulness is no longer a dominant strategy:
- Preferences now depending on the order in the lottery
- Strategizing is now all about guessing the lottery order \& other's preferences

One Sided Exchange Market

- Consider n agents and n items (say houses)
- Each agent has a strict preference over the n houses
- Suppose each agent already owns one of the n houses
- Agents are willing to exchange with others to get a better one
- Goal. A way to reassign items to agents (perform exchanges) st.:
- No one gets a house they like worse than the one they started with
- Outcome is Pareto optimal
- Strategyproof: truthful reporting of preferences is a dominant strategy
- Stable / core allocation: no subset of agents can exchange amongst themselves to get a better outcome
- Sometimes called the house allocation problem

Example Instance

House Allocation Problem

- Ideas on how to design an algorithm to reallocate houses?
- Can consider all two-way swaps:
- Are there any a, b whose favorite is the others house?
- Can do any such swaps
- However, these many not be enough
- Sometimes we may need a three or longer trade cycle
- Naive: go through all 2 cycles, all 3 cycles, and so on and do any advantageous trades on those cycles
- How can we go about this systematically?

Top-Trading Cycle [Gale \& Shapley]

- Each agent report their overall preferences in the beginning
- Step 1. Each agent (simultaneously) points to its favorite house (among houses remaining)
- Induces a directed graph G in which every vertex has outdegree 1
- G must have at least 1 directed cycle (self loops count)
- Pick directed cycles and make all trades on it (each agent gives its house to the agent that points to it)
- Delete all agents and houses that were traded in Step 1

Why is there at least one directed cycle?

Can an agent be involved in two directed cycles?

- While agents remain, go back to Step 1.

Example Instance

Example Instance

Example Instance

Example Instance

Final Output

TTC Properties

- Time Complexity. How many rounds until the algorithm terminates?
- At least one trade occurs at round, at most n rounds
- Can show that each round can be implemented in $O(n)$ time
- Everyone has an incentive to participate, that is,
- Allocation at least as good as the one they started with, why?
- Everyone has their own house at the end of any preference ordering
- TTC is strategyproof (DSIC): being truthful is dominant strategy
- Regardless of what other players are doing, each agent must truthfully point to their favorite remaining house in each round
- What could be a reason to lie?
- Point to less desirable house now to get something better in future

TTC is Strategyproof

- Proof Overview.
- An agent's strategy what preference ordering over n house to submit
- What edges are formed is pre-determined by rankings submitted
- Goal: Fixing everyone else's strategy s_{-i} (their rankings), show that submitting a truthful ranking gives i the best possible item
- For any preference order i may have
- And for any ranking of others S_{-i}
- Claim. At any round t, pointing truthfully at the favorite remaining house gives the best possible outcome, fixing s_{-i}

TTC is Strategyproof

- Proof. Consider any round t. Fix everyone else's rankings s_{-i}
- What are the choices of items that agent i can possibly get at this round?
- Let N_{i} be i 's choice set: of set of items that have a directed path to agent i
- That is, if i were to point to any item in N_{i} : a directed cycle could form
- $\left|N_{i}\right|$ cannot go down in round $t+1$ if i is still unmatched
- If agent j points to i at round t means i is their favorite among remaining items: this does not change as long as i is still unmatched
- Thus, pointing to favorite remaining item (in N_{i} or outside if $N_{i}=\varnothing$) gets best possible outcome: truthful reporting is a dominant strategy

TTC is Stable

- Given a strict preference raking by n agents let $M(i)$ denote the house they receive by running TTC
- (Stable Allocation)
- A subset $S \subseteq\{1, \ldots, n\}$ is a blocking pair if there is a way to trade the houses $M(j)$ they receive from TTC amongst themselves to make one of them better off without making anyone else worse off
- An allocation is stable is there is no such blocking pair
- Stable allocations are also called "core" allocations in the literature
- Stronger condition than Pareto optimality!
- Implies Pareto optimality when $S=N$

Stable Allocation

- Theorem. TTC algorithm outputs a stable allocation.
- Proof. Consider an arbitrary subset S
- Let N_{j} denote the set of agents that get allocated in the j round in TTC
- Let ℓ be the first round in an agent $i \in S$ receives their house
- i gets their favorite house among those not obtained by $N_{1}, \ldots, N_{\ell-1}$
- No member of S among these, that is,
- $N_{j} \cap S=\varnothing$ for $j=1, \ldots, \ell-1$
- Because ℓ is the first round where anyone in S gets their house
- No reallocation within S can make i better off!

Stable Allocation

- Theorem. TTC algorithm outputs a unique stable allocation.
- Proof. Let N_{j} denote the set of agents who get allocated in round j by TTC
- All agents of N_{1} receive their first choice: this must be true in any stable allocation
- If not, the agents of N_{1} can form a coalition for which internal reallocation can make everyone strictly better off
- Similarly, all agents of N_{2} receive their top choice outside N_{1}
- Given that every stable allocation agrees with TTC for agents in N_{1}, such an allocation must also agree for agents in N_{2}
- Inductively we can show that TTC allocation must be the unique stable allocation

Summary

- TTC is a computationally efficient, strategyproof, Pareto optimal and stable allocation algorithm for exchange markets
- Given all its nice properties, we don't hear of it as much as lotteries
- How good is the algorithm for practical applications?
- Paired-kidney donation markets
- School assignment (even though it doesn't fit the exchange model)

