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Announcements and Logistics

A s
* No HW due this week &/f’

| o
» Only 4 days to Spring Break! {5

* HW 4 budget agent competition results are In!
* Will announce at the end of class given we have time
* HW © will be on the topics: Lectures 11 -13

* Will be released this week but due after you return from break

* Regular assignment length, single person

* Due Thursday April 7

e TA feedback form: will post on Slack, please fill by end of the week



Last Time

* Decentralized matching market:

e 1 buyers, m 2 nitems

 Goal: Match buyers to items and find a price vector (py, ..., p,,) S.t.:

 Matching is envy free

 Market is cleared: no item with positive price (any demand) remains unmatched
* [hese are matched market-clearing prices

« Competitive equilibrium: (M, p)

* We created an ascending price auction show a competitive eq exists

 Proved an invariant that every item with non-zero price is always matched

 Means when algorithm terminates we have market-clearing prices!



. &
Spring Break &=

Today

| | Week 6: Matching
 Wrap up matching markets with money:

Markets w/o Money

* Prove that the ascending price auction terminates :
Week 5: Matching

* Move on to mechanism design without money: Markets w Money
o Start with matching markets without money Week 4: Bayesian

e One-sided markets today Analysis & General
Mechanism Design

Week 3:Application :
Sponsored Ad Markets

Week 2: DSIC Auctions

Week |: Game Theory



Ascending-Price Algorithm

. Start with prices of all items p; = 0, assume all valuations v; € L

o Step 1. Check if there is a buyer-perfect matching in preferred item graph

o Step 2. Else, there must a constricted set:
e Thereexists S C {1,...,n} suchthat [S| > [N(S)]
e N(S) are items that are over-demanded
o If there are multiple such sets, choose the minimal set N(S)

. Increase p; < p; + 1 for all items in the set ] € N(S)

* (Go back to Step 1.

* Invariant: if an item has non-zero cost, that item is tentatively matched to some
buyer: p; >0 = Ji: () eM




Ascending-Price Algorithm

* Invariant: if an item has non-zero cost, that item is tentatively matched to some
buyer: p; >0 = Ji: () eM

* Final question:
* Does this algorithm ever terminate?

* Intuition: Since items are always tentatively matched, prices cannot rise for
forever, why?

* At some point, no buyer would want the items!



Proving Our Algorithm Terminates

* Theorem. [he ascending price auction terminates.

 Proof. Show that algorithm starts with a certain amount of "potential energy”

which goes down by at least 1 in each iteration

» | et the potential of any round be defined as:

E= ), pn+ 2,

tems buyers i

u*
]

» where p; is the price of item J in that round and ul.* is the maximum utility 7 can

obtain given prices p In that rouna



Proving Our Algorithm Terminates

» Theorem. The ascending price auction terminates. F = Z D+ Z 1
J J
- Proof. tems buyers i

. At the the beginning, all prices are zero and ul.* = max v
J

]

e Thus, before the auctions starts EO — Z max Vij

* To wrap up proof, we show l /

. Potential can never be negative E > ()
. Potential at each step goes down by at least 1

. Thus, in E steps the algorithm terminates. B



Proving Our Algorithm Terminates

. Lemma: Potential energy E is always non-negative. F = Z p;+ Z Mj>x<

* Proof. tems buyers i

. |f there is at least one item with price O then uj* > 0

 Why is this true”? Use our invariant!

« Every non-zero priced item is matched, thus whenn — 1

items are matched, no need to raise the price of nth item

 Since prices are always are always nonnegative £ > 0



Proving Our Algorithm Terminates

. Claim. Potential E goes down by at least one each step. F— Z D+ Z e
J J
. Proof. Ateach step, we raise the price of all items in N(.S), how items j obuyers i
much does it increase the first term in £ 7
. | N(S)]

« However, the value of ul.* goes down by one for each node in S,

how much does this decrease the second term in E7
» |S]
. Since |[N(S)| < |S], then potential decreases by at least 1
o Thus, the algorithm must terminate in £, steps R

* QOur ascending auction terminates at market clearing prices!



VCG Prices vs Market-Clearing

* VVCG prices set centrally: ask each buyer to report their valuation and charge
each buyer a "personalized price" for their allocation

o VCG prices are only set after a matching has been determined (the matching
that maximizes total valuation of the buyers)

* Not just about the item itselt, but who gets the item

 Market-clearing prices are "posted prices" at which buyers are free to pick
whatever item they like

e prices are chosen first and posted on the item

e Prices cause certain buyers to select certain items leading to a matching



Applying VCG

Prices VCG. Need to find surplus
maximizing allocation first

Zoe Valuations

3,7, 6

7,5, 2




Applying VCG

Prices

Zoe Valuations

3,7, 6

7,5, 2




Applying VCG

Prices |
Surplus without Zoe: 7+7 = 14

Surplus by others when Zoe Is present:
6+5=1I

pp =3

o by

3,7, 6

7,5, 2




Applying VCG

Prices

Zoe Valuations

surplus without Chris: 12+5 = 17
Surplus by others when Chris is
present: 12+5 = 17

3 12, 2, 4

Jing

7,5, 2




Applying VCG

Prices

Zoe Valuations

Surplus without Jing: 12+7 = 19
Surplus by others when Jing Is present:
12+6 = 18

12, 2, 4

3,7, 6




Applying VCG

Prices

Zoe Valuations

We got the same prices & matching  —Hris
as our competitive equilibrium

3,7, 6

7,5, 2




VCG Prices are Market Clearing

* Despite their definition as personalized prices, VCG prices are always
market clearing (for the case when each buyer wants a single item)

e Suppose we computed VCG prices for a given matching market

 Then, instead of assigning the VCG allocation and charging the
price, we post the prices publicly

* Without requiring buyers to follow the VCG match

* Despite this freedom, each buyer will in fact achieve the highest utility

by selecting the item that was allocated by the VCG mechanism!

This is a generalization of the VCG/GSP
result (where valuations are
constrained). The general proof Is

prices of minimum total sum. beyond the scope of this course.

 Theorem. In any matching market (where each buyer can receive a
single item) the VCG prices form the unique set of market clearing



General Demand

 Market clearing prices may not exist in combinatorial markets
« Example, suppose our market has two items {L, R}
* Two buyers Alice and Maya
o Alice wants bothv ({L,R}) =5,v,({L}) =v.({R}) =0
. Maya wants either, vp({L}) = vp({R}) = vp({L,R}) =3
 What's the welfare-maximizing allocation?
* (Give both to Alice
 \What must the price of each be so that Maya doesn’t want it?

- p(L}) 2 3.p(1R}) 2 3

« At a price of > 6 does Alice want it?

\—/g/

AR




Summary

« |In a decentralized market with buyers and items, there exists a price p and
matching M which form a competitive equilibrium

e Such an equilibrium can be reached by a simple simultaneous ascending
auction that raises the price of "over-demanded’ items

o Competitive equilibria are efficient: maximize social weltare and are
guaranteed to exist

e Does not extend to combinatorial demands but still useful in practice
» Caveats and direction of current research:
* No sales occur until prices have settled at their equilibrium point

» Coordination required for tie breaks



Competitive Equilibrium Research

e 2016 Article argues that competitive equilibrium'’s tie breaking
requirement can be fairly strong

* Use learning theory to predict buyer's behavior and demand

* Show convergence under such some mild assumptions

Do Prices Coordinate Markets?

%
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Fluctuations In Practice: Research

e |n practice, one might iImagine that sales are actually happening
concurrently with price adjustment

e [tturns out, the way buyers and sellers respond to prices in the
short-run can dramatically influence prices

 Example. Surge pricing on ride-sharing platforms can be
viewed as an attempt to find market-clearing prices

 However, it passengers and drivers respond to prices
myopically, the resulting behavior can be erratic

 Recent research in AGT studies dynamic (online) resource
allocation problems that take these factors into account




Matching Markets (without Money)



Mechanism Design With Money

Designer's Goal: Allocate items to ensure good global guarantees (e.g. welfare)

Agent's Goal: Report private preferences so as to maximize their utility.

| | Multiple items
n agents with private preferences '

over tems




Mechanism Design With Money

Designer's Goal: Allocate items to ensure good global guarantees (e.g. welfare)

Agent's Goal: Report private preferences so as to maximize their utility

| | Multiple items
n agents with private preferences over

tems: expressed as values (cardinal)

® ’ 00
|

Payments so far were a way to incentivize truthful behavior (strategyproof-ness)




Mechanism Design Without Money

Designer's Goal: Allocate items to ensure good global guarantees Eo

Agent's Goal: Report private preferences that achieve the best outcome

| | Multiple tems
n agents with private preferences

over items (ordinal)

0'%8e ==
= U

What are good global guarantees! How to incentivize truthful behavior without money?




Mechanism Design without Money

« Many domains money transter is either infeasible or inappropriate or illegal
* Problem domains without money”?

 Matching students to courses

* Matching students to school/ colleges/ dorms

 Matching doctors to hospitals

* Sharing resources or barter markets:

Domain of AGT where
TCS truly shines!

 Exchanging goods or services
e Social decision making:

 Voting to elect a leader, a committee or an outcome



Matching Markets without Money

One Sided Markets Two Sided Markets

Housing & Residential Programs

Course
Registration

PAIRED DONATION

GIVING KIDNEY
Alice Bill Alice Bill €
A MA' CH

Andrew Betsy Andrew Betsy
GETTING KIDNEY SETTING KIDNE NATIONAL RESIDENT MATCHING PROGRAME®

-xchange based




One-Sided Matching

Designer's Goal: Allocate items to ensure good global guarantees Eo

Agent's Goal: Report private preferences that achieve the best outcome

College Dorms

n students with ordered
preferences over dorms

What are good global guarantees! How to incentivize truthful behavior without money?




One-Sided Matching

Designer's Goal: Allocate items to ensure Pareto Optimality

Agent's Goal: Report private preferences that achieve the best outcome

College Dorms

n students with ordered
preferences over dorms

.

. £ ﬁ\).‘
k\\_ Y
A ‘.
\

| |

Pareto optimality: An outcome O Is Pareto optimal if there is no outcome O’ and
where every agent does as well as in O and some agent does strictly better.




Assignment Problems

 One-sided matching problems: called allocation or assignment problems:
* Assigning students to dorms
e Qffices to employees
 Jasks to volunteers
« Model. We have n agents and n items
 Agents have strict preference ordering over the items
 (Care only about their own allocation, not others
 Feasible assignment: matching between items and agents

« Goal: Find a Pareto optimal assignment (means no other assignment can
make an agent better off without making another agent worse off)



One-Sided Matching

Designer's Goal: Assigtnment of items to agents is Pareto optimal

Agent's Goal: Report private preferences that achieve the best outcome

College Dorms

n students with ordered
preferences over dorms

?

; &

Mechanism. Any ideas for algorithms that incentivize truthful behavior?




One-Sided Matching Market

students to do

How do we matching

"ms/?

Zoe

Private
Preferences

| >3>72

| >2>3

| >2>3



Housing Lotteries

 Most housing allocation algorithms look something like this:
 Asks agents to report their preferences over items
 (Choose an ordering of all agents (lottery order)

e (Often based on some metrics are considered "tair’, e.q., seniority, years of
service to college, tamily size, etc

 (Go down the list, assign each agent their favorite item that is still remaining

« Example. Faculty housing lottery at Williams

 Thisis a good mechanism?

o Strategyproof, Pareto optimal?



Serial Dictatorships (SD)

« Each of the n agents submit a ranked ordering over items

. Each agentis assigned a rank from {1,2,...,n}
e Fori=1,2,....n

« Agent1is assigned their favorite choice among options still available
 Lemma. The serial dictatorship mechanism is strategyproof & Pareto optimal.

 Why is it strategyproof, that is, why is truthful reporting of preferences a
dominant strategy for the agents

 (Cannot control lottery order
* @iven lottery order, truthful reporting obtains the best possible outcome

 No incentive to deviate (regardless of other's preferences)



Serial Dictatorships (SD)

« Each of the n agents submit a ranked ordering over items

. Each agentis assigned a rank from {1,2,...,n}
e Fori=1,2,....n
« Agent 1 is assigned their favorite choice among options still available
« Lemma. The serial dictatorship mechanism is strategyproof & Pareto optimal.
 Why Is it Pareto optimal?
* J|dea: show no other assignment can Pareto dominate
 Thatis, does not make anyone better off without making another worse oft

 Thatis, any other assignment must make some agent worse off



Serial Dictatorships (SD)

* Lemma. The serial dictatorship mechanism is strategyproof & Pareto optimal.
e Let M be the output of SD algorithm. Proof of Pareto-optimality:
« Let M'be any assignment where no agent is worse off than in M
 If any agent is worse off in M’ it cannot Pareto dominate M!
« Claim: Any such M'is identical to M, and thus M must be Pareto optimal
« M’ must give i its favorite item (which M does)
e Suppose M'isthe sameas M untili =k
o Consideragenti = k+ 1, M gives i their favorite among remaining items
« M’ must do the same to make them not worse off

e Thus M is the unique Pareto optimal outcome



Takeways

e Serial dictatorship seems great: Pareto optimal and strategyprooft
* Any criticism?
 (Can be unfair when a priority natural order between agents does not exist

 Random-serial-dictatorship (RSD) runs the serial-dictatorship on a ranked ordering that
IS sampled unitformly at random from all possible ordering

 What happens if we restrict the # items each agent can rank?

 Happens in course registration (can only preregister for so many courses)

e Truthfulness is no longer a dominant strategy:
* Preferences now depending on the order in the lottery

o Strategizing is now all about guessing the lottery order & other's preferences



One Sided Exchange Market

o Consider n agents and n items (say houses)

« Each agent has a strict preference over the n houses

o Suppose each agent already owns one of the n houses

 Agents are willing to exchange with others to get a better one

 Goal. A way to reassign items to agents (perform exchanges) st.:
* No one gets a house they like worse than the one they started with
 (Qutcome is Pareto optimal
o Strategyproof: truthful reporting of preferences is a dominant strategy

 Stable / core allocation: no subset of agents can exchange amongst
themselves to get a better outcome

 Sometimes called the house allocation problem



Example Instance




House Allocation Problem

* |deas on how to design an algorithm to reallocate houses”
 (Can consider all two-way swaps:
« Are there any a, b whose favorite is the others house?
 (Can do any such swaps
 However, these many not be enough
e Sometimes we may need a three or longer trade cycle

 Naive: go through all 2 cycles, all 3 cycles, and so on and do any
advantageous trades on those cycles

« How can we go about this systematically”?



Top-Trading Cycle [Gale & Shapley]

 Each agent report their overall preterences in the beginning

 Step 1. Each agent (simultaneously) points to its favorite house

(among houses remaining) VWhy S there at least one
directed cycle!

« Induces a directed graph G in which every vertex has
outdegree 1

« (G must have at least 1 directed cycle (self loops count)

* Pick directed cycles and make all trades on it (each agent

gives its house to the agent that points to it) Can an agent be involved In

| two directed cycles!
* Delete all agents and houses that were traded in Step 1

 While agents remain, go back to Step 1.



Example Instance




Example Instance




Example Instance




Example Instance

& -L

> 63




Final Output




TTC Properties

 Time Complexity. How many rounds unti

| the algorithm terminates?

o At least one trade occurs at round, at most n rounds

 Can show that each round can be implemented in O(n) time

* Everyone has an incentive to participate, that is,

* Allocation at least as good as the one they started with, why?

 Everyone has their own house at the end of any preference ordering

 [T1C is strategyproof (DSIC): being truthful is dominant strategy

 Regardless of what other players are doing, each agent must truthfully

ooint to their favorite remaining house

« \What could be a reason to lie”?

n each round

* Point to less desirable house now to get something better in future



TTC is Strategyproof

* Proof Overview.
o An agent's strategy what preference ordering over n house to submit
 What edges are formed is pre-determined by rankings submitted

« Goal: Fixing everyone else’s strategy s_; (their rankings), show that submitting

a truthful ranking gives 1 the best possible item
« For any preference order 1 may have

« And for any ranking of others §_.

o Claim. At any round t, pointing truthfully at the favorite remaining house gives

the best possible outcome, fixing s_;



TTC is Strategyproof

« Proof. Consider any round . Fix everyone else's rankings s_;
« What are the choices of items that agent 1 can possibly get at this round?

« Let NV, be i's choice set: of set of items that have a directed path to agent
 Thatis, if £ were to point to any item in /V; : a directed cycle could form
 |N;| cannot go down in round ¢ + 1 if i is still unmatched

 |f agentJ points to 1 at round f means I is their favorite among remaining
items: this does not change as long as 1 is still unmatched

« Thus, pointing to favorite remaining item (in IV, or outside if N; = @) gets best
possible outcome: truthful reporting is a dominant strategy



TTC Is Stable

» Given a strict preference raking by n agents let M(i) denote the house they
receive by running TTC

* (Stable Allocation)

e Asubset S C{l,...,n} is a blocking pair if there is a way to trade the
nouses M(j) they receive from TTC amongst themselves to make one of
them better off without making anyone else worse off

 An allocation is stable is there is no such blocking pair
e Stable allocations are also called "core” allocations in the literature
o Stronger condition than Pareto optimality!

« Implies Pareto optimality when § = N



Stable Allocation

* Theorem. TT1C algorithm outputs a stable allocation.
« Proof. Consider an arbitrary subset S

o Let N] denote the set of agents that get allocated in the j round in TTC

. Let £ be the first round in an agenti € S receives their house
e 1 gets their favorite house among those not obtained by Ny, ..., N,_;
« No member of § among these, that is,
o NjnS= Qforj=1,....,0 — 1
» Because £ is the first round where anyone in S gets their house

« No reallocation within § can make i better off!



Stable Allocation

Theorem. TTC algorithm outputs a unique stable allocation.

Proof. Let /V; denote the set of agents who get allocated in round j by TTC

All agents of /N, receive their first choice: this must be true in any stable allocation

. If not, the agents of /V; can form a coalition for which internal reallocation can

make everyone strictly better off

Similarly, all agents of N, receive their top choice outside N,

e (Qiven that eve

'y stable allocation agrees with TTC for agents in NV, such an

allocation mus!

Inductively we can
B

' also agree for agents in IV,

show that TTC allocation must be the unique stable allocation



Summary

 TTC is acomputationally efficient, strategyproof, Pareto optimal and stable
allocation algorithm for exchange markets

 @Given all its nice properties, we don't hear of it as much as lotteries
 How good is the algorithm for practical applications?

 Paired-kidney donation markets

* School assignment (even though it doesn't fit the exchange model)



