CSCI 357: Algorithmic Game Theory Lecture 12: One-Sided Matching (without Money)

Shikha Singh

Announcements and Logistics

- No HW due this week
- Only 4 days to Spring Break!

- HW 4 budget agent competition results are in!
 - Will announce at the end of class given we have time
- HW 6 will be on the topics: Lectures 11 13
- Will be released this week but due after you return from break
 - Regular assignment length, single person
 - Due Thursday April 7
- TA feedback form: will post on Slack, please fill by end of the week

Last Time

- Decentralized matching market:
 - *n* buyers, $m \ge n$ items
- Goal: Match buyers to items and find a price vector (p_1, \ldots, p_m) s.t.:
 - Matching is **envy free**
- These are matched market-clearing prices
- Competitive equilibrium: (M, \mathbf{p})
- We created an ascending price auction show a competitive eq exists
 - Proved an invariant that every item with non-zero price is always matched
 - Means when algorithm terminates we have market-clearing prices!

• Market is **cleared**: no item with positive price (any demand) remains unmatched

Today

- Wrap up matching markets with money:
 - Prove that the ascending price auction terminates
- Move on to mechanism design without money:
 - Start with matching markets without money
 - One-sided markets today

Week 6: Matching Markets w/o Money

Week 5: Matching Markets w Money

Week 4: Bayesian Analysis & General Mechanism Design

Week 3: Application : Sponsored Ad Markets

Week 2: DSIC Auctions

Week I: Game Theory

Ascending-Price Algorithm

- Start with prices of all items $p_i=0,$ assume all valuations $v_{ii}\in\mathbb{Z}$
- Step 1. Check if there is a buyer-perfect matching in preferred item graph
- Step 2. Else, there must a constricted set:
 - There exists $S \subseteq \{1, \dots, n\}$ such that |S| > |N(S)|
 - N(S) are items that are **over-demanded**
 - If there are multiple such sets, choose the minimal set N(S)
 - Increase $p_j \leftarrow p_j + 1$ for all items in the set $j \in N(S)$
 - Go back to Step 1.
- **Invariant:** if an item has non-zero cost, that item is tentatively matched to some buyer: $p_i > 0 \implies \exists i : (j, i) \in M$

Ascending-Price Algorithm

- **Invariant:** if an item has non-zero cost, that item is tentatively matched to some buyer: $p_j > 0 \implies \exists i : (j, i) \in M$
- Final question:
 - Does this algorithm ever terminate?
- Intuition: Since items are always tentatively matched, prices cannot rise for forever, why?
 - At some point, no buyer would want the items!

- Theorem. The ascending price auction terminates.
- **Proof.** Show that algorithm starts with a certain amount of "potential energy" which goes down by at least 1 in each iteration
- Let the potential of any round be defined as:

$$E = \sum_{i \text{ terms } j} p_j + b_i$$

- where p_j is the price of item j in that round and u_i^* is the maximum utility i can obtain given prices ${f p}$ in that round

 $\sum u_i^*$ Jyers i

- **Theorem.** The ascending price auction terminates.
- \cdot **Proof.**
- At the the beginning, all prices are zero and $u_i^* = \max_i v_{ij}$
- Thus, before the auctions starts $E_0 = \sum_{i} \max_{j} v_{ij}$
- To wrap up proof, we show
 - Potential can never be negative $E \ge 0$
 - Potential at each step goes down by at least 1
- Thus, in E_0 steps the algorithm terminates.

 $E = \sum p_j + \sum u_j^*$ items *j* buyers *i*

- Lemma: Potential energy E is always non-negative.
- Proof.
- If there is at least one item with price 0 then $u_i^* \ge 0$
 - Why is this true? Use our invariant!
 - Every non-zero priced item is matched, thus when n-1items are matched, no need to raise the price of *n*th item
- Since prices are always are always nonnegative $E \ge 0$

- Claim. Potential E goes down by at least one each step.
- **Proof**. At each step, we raise the price of all items in N(S), how much does it increase the first term in E?

• N(S)

• However, the value of u_i^* goes down by one for each node in S, how much does this decrease the second term in E?

• |S|

- Since |N(S)| < |S|, then potential decreases by at least 1
- Thus, the algorithm must terminate in E_0 steps
- Our ascending auction terminates at market clearing prices!

 $E = \sum p_j + \sum u_i^*$ items *j* buyers *i*

VCG Prices vs Market-Clearing

- VCG prices set centrally: ask each buyer to report their valuation and charge each buyer a "personalized price" for their allocation
- VCG prices are only set after a matching has been determined (the matching that maximizes total valuation of the buyers)
 - Not just about the item itself, but who gets the item
- Market-clearing prices are "posted prices" at which buyers are free to pick whatever item they like
 - prices are chosen first and posted on the item
 - Prices cause certain buyers to select certain items leading to a matching

Prices

Valuations

12, 2, 4

8, 7, 6

7, 5, 2

Prices

 $p_3?$

Prices

Surplus by others when Chris is

Prices

Surplus without Jing: **12+7 = 19** 12+6 = 18

Prices

VCG Prices are Market Clearing

- Despite their definition as personalized prices, VCG prices are always market clearing (for the case when each buyer wants a single item)
- Suppose we computed VCG prices for a given matching market
- Then, instead of assigning the VCG allocation and charging the price, we post the prices publicly
 - Without requiring buyers to follow the VCG match.
- Despite this freedom, each buyer will in fact achieve the highest utility by selecting the item that was allocated by the VCG mechanism!
- Theorem. In any matching market (where each buyer can receive a single item) the VCG prices form the unique set of market clearing prices of minimum total sum.

This is a generalization of the VCG/GSP result (where valuations are constrained). The general proof is beyond the scope of this course.

General Demand

- Market clearing prices may not exist in combinatorial markets
- **Example**, suppose our market has two items $\{L, R\}$
- Two buyers Alice and Maya
- Alice wants both $v_a(\{L, R\}) = 5$, $v_a(\{L\}) = v_s(\{R\}) = 0$
- Maya wants either, $v_p(\{L\}) = v_p(\{R\}) = v_p(\{L,R\}) = 3$
- What's the welfare-maximizing allocation?
 - Give both to Alice
- What must the price of each be so that Maya doesn't want it?

• $p(\{L\}) \ge 3, p(\{R\}) \ge 3$

• At a price of ≥ 6 does Alice want it?

Summary

- In a decentralized market with buyers and items, there exists a price **p** and matching M which form a competitive equilibrium
- Such an equilibrium can be reached by a simple **simultaneous ascending auction** that raises the price of "over-demanded" items
- Competitive equilibria are efficient: maximize social welfare and are guaranteed to exist
 - Does not extend to combinatorial demands but still useful in practice
- Caveats and direction of current research:
 - No sales occur until prices have settled at their equilibrium point
 - Coordination required for tie breaks

Competitive Equilibrium Research

- 2016 Article argues that competitive equilibrium's tie breaking requirement can be fairly strong
- Use **learning theory** to predict buyer's behavior and demand
- Show convergence under such some mild assumptions

Do Prices Coordinate Markets?

Jamie Morgenstern Ryan Rogers Departments of Computer and Department of Applied Information Science and Mathematics and Economics **Computational Science** University of Pennsylvania University of Pennsylvania USA USA jamiemmt@cs.cmu.edu ryrogers@sas.upenn.edu **Rakesh Vohra Economics Department** University of Pennsylvania USA rvohra@seas.upenn.edu

Fluctuations in Practice: Research

- In practice, one might imagine that sales are actually happening concurrently with price adjustment
- It turns out, the way buyers and sellers respond to prices in the short-run can dramatically influence prices
- **Example**. Surge pricing on ride-sharing platforms can be viewed as an attempt to find market-clearing prices
- However, if passengers and drivers respond to prices myopically, the resulting behavior can be erratic
- Recent research in AGT studies dynamic (online) resource **allocation problems** that take these factors into account

Matching Markets (without Money)

Mechanism Design With Money

n agents with private preferences over items

Designer's Goal: Allocate items to ensure good global guarantees (e.g. welfare) **Agent's Goal:** Report **private preferences** so as to maximize their utility.

Multiple items

Mechanism Design With Money

Designer's Goal: Allocate items to ensure good global guarantees (e.g. welfare) **Agent's Goal:** Report **private preferences** so as to maximize their utility.

n agents with private preferences over items: expressed as **values** (cardinal)

Payments so far were a way to incentivize truthful behavior (strategyproof-ness)

Designer's Goal: Allocate items to ensure good **global guarantees**

n agents with private preferences over items (ordinal)

What are good global guarantees? How to incentivize truthful behavior without money?

Mechanism Design without Money

- Many domains money transfer is either infeasible or inappropriate or illegal
- Problem domains without money?
 - Matching students to courses \bullet
 - Matching students to school/ colleges/ dorms \bullet
 - Matching doctors to hospitals
- Sharing resources or barter markets:
 - Exchanging goods or services lacksquare
- Social decision making:
 - Voting to elect a leader, a committee or an outcome \bullet

Domain of AGT where TCS truly shines!

Matching Markets without Money

One Sided Markets

Housing & Residential Programs

Exchange based

Two Sided Markets

One-Sided Matching

Designer's Goal: Allocate items to ensure good **global guarantees Agent's Goal:** Report **private preferences** that achieve **the best outcome**

n students with **ordered** preferences over dorms

College Dorms

What are good global guarantees? How to incentivize truthful behavior without money?

One-Sided Matching

Designer's Goal: Allocate items to ensure Pareto Optimality Agent's Goal: Report private preferences that achieve the best outcome

n students with **ordered preferences** over dorms

Pareto optimality: An outcome O is Pareto optimal if there is no outcome O' and where every agent does as well as in O and some agent does strictly better.

Assignment Problems

- One-sided matching problems: called allocation or assignment problems:
 - Assigning students to dorms
 - Offices to employees lacksquare
 - Tasks to volunteers
- **Model**. We have *n* agents and *n* items
 - Agents have strict preference ordering over the items lacksquare
 - Care only about their own allocation, not others lacksquare
- Feasible assignment: matching between items and agents
- **Goal:** Find a Pareto optimal assignment (means no other assignment can make an agent better off without making another agent worse off)

One-Sided Matching

Designer's Goal: Assignment of items to agents is **Pareto optimal** Agent's Goal: Report private preferences that achieve the best outcome

n students with **ordered** preferences over dorms

Mechanism.

College Dorms

Any ideas for algorithms that incentivize truthful behavior?

One-Sided Matching Market

Housing Lotteries

- Most housing allocation algorithms look something like this:
 - Asks agents to report their preferences over items \bullet
 - Choose an ordering of all agents (lottery order) lacksquare
 - Often based on some metrics are considered "fair", e.g., seniority, years of ulletservice to college, family size, etc.
- Go down the list, assign each agent their favorite item that is still remaining
- **Example.** Faculty housing lottery at Williams
- This is a good mechanism?
 - Strategyproof, Pareto optimal?

Serial Dictatorships (SD)

- Each of the *n* agents submit a ranked ordering over items
- Each agent is assigned a rank from $\{1, 2, ..., n\}$
- For i = 1, 2, ..., n
 - Agent i is assigned their favorite choice among options still available
- **Lemma**. The serial dictatorship mechanism is strategyproof & Pareto optimal.
- Why is it strategyproof, that is, why is truthful reporting of preferences a dominant strategy for the agents
 - Cannot control lottery order
 - Given lottery order, truthful reporting obtains the best possible outcome
 - No incentive to deviate (regardless of other's preferences) lacksquare

Serial Dictatorships (SD)

- Each of the *n* agents submit a ranked ordering over items
- Each agent is assigned a rank from $\{1, 2, ..., n\}$
- For i = 1, 2, ..., n
 - Agent i is assigned their favorite choice among options still available
- **Lemma**. The serial dictatorship mechanism is strategyproof & Pareto optimal.
- Why is it Pareto optimal?
 - Idea: show no other assignment can Pareto dominate
 - That is, does not make anyone better off without making another worse off
 - That is, any other assignment must make some agent worse off

Serial Dictatorships (SD)

- Lemma. The serial dictatorship mechanism is strategyproof & Pareto optimal.
- Let M be the output of SD algorithm. Proof of Pareto-optimality:
- Let M' be any assignment where no agent is worse off than in M
 - If any agent is worse off in M' it cannot Pareto dominate M!
- Claim: Any such M' is identical to M, and thus M must be Pareto optimal
 - M' must give i its favorite item (which M does)
- Suppose M' is the same as M until i = k
- Consider agent i = k + 1, M gives i their favorite among remaining items
 - M' must do the same to make them not worse off
- Thus M is the unique Pareto optimal outcome

Takeways

- Serial dictatorship seems great: Pareto optimal and strategyproof
- Any criticism?
 - Can be unfair when a priority natural order between agents does not exist \bullet
- is sampled uniformly at random from all possible ordering
- What happens if we restrict the **# items** each agent can rank?
 - Happens in course registration (can only preregister for so many courses) \bullet
 - Truthfulness is no longer a dominant strategy: \bullet
 - Preferences now depending on the order in the lottery \bullet
- Strategizing is now all about guessing the lottery order & other's preferences

Random-serial-dictatorship (RSD) runs the serial-dictatorship on a ranked ordering that

One Sided Exchange Market

- Consider *n* agents and *n* items (say houses)
- Each agent has a strict preference over the *n* houses
- Suppose each agent already owns one of the *n* houses
- Agents are willing to exchange with others to get a better one
- **Goal**. A way to reassign items to agents (perform **exchanges**) st.:
 - No one gets a house they like worse than the one they started with \bullet
 - Outcome is **Pareto optimal**
 - **Strategyproof:** truthful reporting of preferences is a dominant strategy
 - Stable / core allocation: no subset of agents can exchange amongst ulletthemselves to get a better outcome
- Sometimes called the house allocation problem

Example Instance 5, 6, 3 2 6,4 3 4,2,I

House Allocation Problem

- Ideas on how to design an algorithm to reallocate houses?
- Can consider all two-way swaps:
 - Are there any a, b whose favorite is the others house?
 - Can do any such swaps ullet
- However, these many not be enough
- Sometimes we may need a three or longer trade cycle
- **Naive:** go through all 2 cycles, all 3 cycles, and so on and do any advantageous trades on those cycles
- How can we go about this systematically?

Top-Trading Cycle [Gale & Shapley]

- Each agent report their overall preferences in the beginning
- Step 1. Each agent (simultaneously) points to its favorite house (among houses remaining)
 - Induces a directed graph G in which every vertex has outdegree 1
 - G must have at least 1 directed cycle (self loops count)
 - Pick directed cycles and make all trades on it (each agent gives its house to the agent that points to it)
 - Delete all agents and houses that were traded in Step 1
- While agents remain, go back to Step 1.

Why is there at least one directed cycle?

Can an agent be involved in two directed cycles?

Example Instance 5, 6, 3 2 6,4 3 4,2,I

Example Instance

Example Instance

Example Instance

Final Output

TTC Properties

- **Time Complexity.** How many rounds until the algorithm terminates?
 - At least one trade occurs at round, at most *n* rounds
 - Can show that each round can be implemented in O(n) time
- Everyone has an incentive to participate, that is,
 - Allocation at least as good as the one they started with, why? \bullet
 - Everyone has their own house at the end of any preference ordering lacksquare

TTC is **strategyproof (DSIC)**: being truthful is dominant strategy

- Regardless of what other players are doing, each agent must truthfully point to their favorite remaining house in each round
- What could be a reason to lie?
 - Point to less desirable house now to get something better in future

TTC is Strategyproof

- Proof Overview.
 - An agent's strategy what preference ordering over *n* house to submit
 - What edges are formed is pre-determined by rankings submitted
- **Goal**: Fixing everyone else's strategy s_{-i} (their rankings), show that submitting a truthful ranking gives i the best possible item
 - For any preference order i may have
 - And for any ranking of others S_{-i}
- **Claim**. At any round *t*, pointing truthfully at the favorite remaining house gives the best possible outcome, fixing s_{-i}

TTC is Strategyproof

- **Proof**. Consider any round *t*. Fix everyone else's rankings S_{-i}
- What are the choices of items that agent i can possibly get at this round?
- Let N_i be i's choice set: of set of items that have a directed path to agent i
 - That is, if i were to point to any item in N_i : a directed cycle could form
- $|N_i|$ cannot go down in round t + 1 if i is still unmatched
 - If agent j points to i at round t means i is their favorite among remaining items: this does not change as long as i is still unmatched
- Thus, pointing to favorite remaining item (in N_i or outside if $N_i = \emptyset$) gets best possible outcome: truthful reporting is a dominant strategy

TTC is Stable

- Given a strict preference raking by n agents let M(i) denote the house they receive by running TTC
- (Stable Allocation)
 - A subset $S \subseteq \{1, ..., n\}$ is a **blocking pair** if there is a way to trade the houses M(j) they receive from TTC amongst themselves to make one of them better off without making anyone else worse off
 - An allocation is **stable** is there is no such blocking pair
- Stable allocations are also called "core" allocations in the literature
- Stronger condition than Pareto optimality!
 - Implies Pareto optimality when S = N

Stable Allocation

- **Theorem**. TTC algorithm outputs a stable allocation.
- **Proof**. Consider an arbitrary subset *S*
- Let N_j denote the set of agents that get allocated in the j round in TTC
- Let ℓ be the **first round** in an agent $i \in S$ receives their house
 - *i* gets their favorite house among those not obtained by $N_1, \ldots, N_{\ell-1}$
 - No member of S among these, that is,
 - $N_j \cap S = \emptyset$ for $j = 1, \dots, \ell 1$
 - Because ℓ is the first round where anyone in S gets their house
- No reallocation within S can make *i* better off!

Stable Allocation

- **Theorem**. TTC algorithm outputs a **unique** stable allocation.
- **Proof**. Let N_j denote the set of agents who get allocated in round j by TTC
- All agents of N_1 receive their first choice: this must be true in any stable allocation
 - If not, the agents of N_1 can form a coalition for which internal reallocation can make everyone strictly better off
- Similarly, all agents of N_2 receive their top choice outside N_1
 - Given that every stable allocation agrees with TTC for agents in $N_1,\,{\rm such}$ an allocation must also agree for agents in N_2
- Inductively we can show that TTC allocation must be the unique stable allocation

Summary

- TTC is a computationally efficient, strategyproof, Pareto optimal and stable allocation algorithm for exchange markets
- Given all its nice properties, we don't hear of it as much as lotteries
- How good is the algorithm for practical applications?
 - Paired-kidney donation markets \bullet
 - School assignment (even though it doesn't fit the exchange model) ullet