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• Assignment 4 due tonight at 11 pm

• Submit code via Github, latex answers and submit PDF via Gradescope


• Things to watch out for:


• When targeting a slot, what if every slot gives negative utility?  What is the balanced 
bidding condition in that case?


• Related:  make sure to never bid above value


• Set  in balanced bidding condition


• VCG base case:   what should the occupant of the lowest slot pay?


• How to verify the outputs are reasonable?

α−1 = 2 ⋅ α0

Announcements and Logistics

Questions?



• Understand AGT theory vs practice


• Harder to reason about asymmetric strategies in theory


• Humans reaching equilibrium vs auto-bidders


• Greedy balanced bidding heuristic is not perfect


• Iteratively tries to converge to the theoretical equilibrium


• But, simple best-response dynamics get close even they do not converge


• Rules of mechanism matter


• Simple mechanisms:   complex bidding behavior


• Complex mechanism:  simple bidding behavior

Empirical Analysis Takeaways



• Assignment 5 will be released tomorrow


• Shorter problem set, single-person assignment


• Due a day early:  Wed 11 pm instead of Thursday


• To give time for returning graded feedback before midterm


• Self-scheduled midterm 1 on March 12


• Pencil, paper exam,  open book and notes


• Pick up the exam anytime between 9am - 7pm, will use a google form to coordinate


• ~3 hour exam, TCL 202 room will be reserved for those who want to use it


• Syllabus:  all topics covered until Monday March 7 and Assignment 5

Assignment 5 and Midterm 1

Questions?



• Computed the Bayes Nash equilibrium of first price auctions


• Showed revenue equivalence of first and second price auction


• Today:   show how to use revenue equivalence to solve for BNE 
of any single-parameter  mechanism0/1

Last Time 



Myerson’s Lemma: BNE 
• Consider any single-parameter 0/1 allocation with values drawn i.i.d. from distribution 


• A strategy profile  is a Bayes’ Nash equilibrium in  if and only if for all 

 (a)  (monotonicity) the allocation probability  is monotone non decreasing


(b)  (payment identity) agent ’s expected payment is given by:  

      


        


 
 
Assuming that .


Proof is analogous to the DSE case.

G
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pi(vi) = vi ⋅ xi(vi) − ∫
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0
xi(z) dz

pi(0) = 0

Credit: Hartline’s Book on Mechanism Design

Expected payment only depends on 
allocation probability!

http://jasonhartline.com/MDnA/MDnA-ch2.pdf


Revenue Equivalence
• Most significant observation in auction theory

• A mechanism with the same allocation in DSE (BNE) have the 

same (expected) revenue!

• In fact, each agent has the same expected payment in 

each mechanism

• Direct corollary of Myerson’s lemma


• The interim expected payments depend only on the 
allocation probability!


• Corollary (Revenue equivalence).  

• For any two mechanisms in 0-1 single-parameter setting, if 

the mechanism have the same BNE allocation, then they 
have the same expected revenue (assuming -valued 
agents pay nothing)

0

If we want to increase the (expected) 
revenue, changing payments or 

charging more won’t do it!  You 
need to change how you allocate!



Solving for BNE of an Auction
• Myerson’s lemma tells us what outcomes are possible in BNE, but not how to 

solve for BNE strategies

• Solving for BNE is important:  if you are a bidder in an auction, you want to 

know how to bid!

• Can use revenue equivalence to solve for BNE strategies in symmetric 

environments 

• If two mechanisms have the same allocation rule, they must have the same 

expected payment


• To solve for BNE strategies in a mechanism , then the approach is:


• Express agents expected payment it terms of their strategy and value

• Set it equal to the expected payment in a strategically-simpler revenue 

equivalent mechanism  (usually a “second-price implementation”)

M

M′￼



Solving for BNE:  Steps
• Step 1.  Guess what the allocation might be in a Bayes-Nash equilibrium 

(usually a surplus-maximizing one)

• E.g., in a single-item auction, guess that highest bidder wins is a BNE


•  Step 2.  Calculate the interim expected payment of an agent in a strategically-
simpler auction (usually the DSIC version, e.g. the second-price version)


• E.g., consider a 2-bidder second price auction with values i.i.d. in :U(0,1)

E[p1(v1)] = E[p1(v1) | 1 wins] ⋅ Pr[1 wins ] + E[p1(v1) | 1 loses] ⋅ Pr[1 loses ]

= E[v2 | 1 wins ] ⋅ Pr[1 wins ]

=
v1

2
⋅ Pr[1 wins ]  is a uniform random variable that evenly divides the 

interval it is on, so if  then 
v2

v2 ∈ [0,v1] E[v2] = v1/2

= E[v2 | v2 ≤ v1] ⋅ Pr[1 wins ]
If we draw  samples i.i.d. 

from  then the 

expected value of th highest 

draw is 

n
U(0, a)

k
n − (k − 1)

n + 1
⋅ a

Loser pays zero



Solving for BNE:  Steps
• Step 3.  Write the expression for the interim expected payment in terms of the 

strategy in the auction you are trying to solve for the BNE 

• e.g., consider a 2-bidder first price auction 

• Step 4. Solve for the BNE strategy by equating the expected payments 
between the two auctions

E[p1(v1)] = E[p1(v1) | 1 wins] ⋅ Pr[1 wins ] + E[p1(v1) | 1 loses] ⋅ Pr[1 loses ]
= s1(v1) ⋅ Pr[1 wins ]

Loser pays zero

= s1(v1) ⋅ Pr[1 wins ]
v1

2
⋅ Pr[1 wins ]

s1(v1) = v1/2
Prob of winning at a particular 

value is the same in both auctions!



Solving for BNE:  Steps
• Step 5.  Finally, verify that the initial guess was correct and the strategy is a 

symmetric BNE of the mechanism !

• We have already verified for first-price auction

• This is important since the other steps are just a way to guess the 

equilibrium strategy

• This process can be used for any single-parameter 0/1 auction (not just 

single-item auction)

• Let us apply this to an all-pay auction



All Pay Auctions
• Revenue equivalence governs all kinds of auctions


• Consider a single-item all pay sealed-bid auction, where the highest bidder 
wins but everyone pays their bid


• Thus, utility of participating can be negative in this case


• Participating has a cost!


• Can you think of examples of this setting in practice?



Solving for BNE:  All Pay
• Example:  All-pay auction with 2 bidders i.i.d. 


• Step 1. Assume highest bidder wins 


• Step 2.  Interim expected payment in second-price auction is


• Step 3.  Interim expected payment in all-pay auction? 


• Step 4.  Set them equal:  here we need to compute the probability of winning

U(0,1)

v1

2
⋅ Pr[1 wins ]

E[p1(v1)] = E[p1(v1) | 1 wins] ⋅ Pr[1 wins ] + E[p1(v1) | 1 loses] ⋅ Pr[1 loses ]
= s1(v1) ⋅ Pr[1 wins ] + s1(v1) ⋅ Pr[1 loses]
= s1(v1)

ESP[p1(v1)] =
v1

2
⋅ Pr[v2 ≤ v1] =

v2
1

2

Regardless of winning or 

losing you pay your bid



Solving for BNE:  All Pay
• Example:  All-pay auction with 2 bidders i.i.d. 


• Step 4.  Set the interim expected payment equal to find the BNE strategy


• Step 5.  Verify that this a symmetric Bayes Nash of the auction


• Guess for -bidder symmetric BNE?  


• 


• HW problem:  verify that this is a symmetric BNE of all-pay auctions 


• Same way as we did for first-price auctions

U(0,1)

n

( n − 1
n )vn

i

s1(v1) =
v2

1

2



Bayesian Analysis Challenges 
• So far we considered symmetric settings:  


• Values are drawn i.i.d. from the same distribution


• For these settings, Bayes Nash equilibrium are pretty well understood


• They also lead to efficient outcomes:  surplus maximizing outcomes


• For asymmetric settings:


• Information asymmetry:  e.g.  different companies do different levels of 
"market research"


• Can still study BNE but often more complicated:  no closed form solutions 
and multiple (some inefficient) equilibrium


• Near CS-driven approach:  study approximation bounds (price of anarchy) 
of these auctions



Price of Anarchy: Auctions
• 2017 Survey 



Price of Anarchy: Auctions
• Even with two bidders and asymmetric distributions, the BNE can be very 

complicated:


• Instead of trying to find the Bayes Nash, the literature quantifies the 
approximation ratio of any Bayes Nash equilibrium using price of anarchy


• Theorem (Price of Anarchy of First-Price Single-Item Auctions). The price of 
anarchy of the first-price single-item auction format is at least  ≈ 0.63.


• justifies conventional wisdom about such auctions

1 − 1/e



Revenue Maximization



• So, far revenue is incidental:  payment was necessary to impose truthful behavior


• Start with one bidder with private value  and one item


• What is the unique DSIC surplus maximizing auction for this setting?

• Allocate the item to the the bidder

• Charge critical bid:  zero 


• Thus, our DSIC surplus-maximizing auction has zero revenue 

• Any ideas on how we can improve the revenue?


• Post a minimum price

• Ignore bids below it: don’t sell

• If bid is above it, charge posted price

v

Let's Talk about Revenue

v
r



• Suppose we knew the bidders value  (maximum willingness to pay)


• What should the posted price  be?


•   (also called reservation/reserve price or the monopoly price)


• Unfortunately we don’t know 


• What are the tradeoffs of setting  too high or too low?


• Set it too high, might not sell the item


• Set it too high, might get less revenue than is possible


• What if the seller knew the distribution  
from which  is drawn?

v

r

r = v

v

r

F
v

Single Bidder Single Item

v
r



• Suppose we set the reserve price to  and the value  of the bidder is 
drawn from a distribution with CDF 


• If :  no sale


• Otherwise we sell the item at price 


• What is the expected revenue?








• If , then 


, maximized at 


• Achieving an expected revenue of 

r v
F

v < r

r

E[R] = r ⋅ Pr(sale)+0 ⋅ Pr(no sale)

= r ⋅ (1 − F(r))
v ∼ i.i.d. U(0,1) F(r) = r

E[R] = r(1 − r) r = 1/2
1/4

Posted Price for One Bidder

v
r

Notice that we sometimes don’t sell the item, 
i.e. (this is not surplus maximizing): revenue 

equivalence says we must allocate item 
differently to generate more revenue 



• Suppose now we have two bidders:  suppose both their values 
is drawn uniform i.i.d. from  and no reserve price


• We calculated the revenue of second price auction without 
reserve last lecture


•  


• Can we improve this revenue if we have a reserve price?


• Suppose 

U(0,1)

E[R2] =
n − 1
n + 1

=
1
3

r = 1/2

Second Price with Reserve

v1

rv2

0 1/2 1



• Suppose now we have two bidders:  suppose both their values 
is drawn uniform i.i.d. from  and 


• Probability that both bidder values are below 


• Probability that two uniformly randomly thrown balls fall into 
the first half (when both are thrown independently)


•  = 


• Expected revenue in this case?  


•

U(0,1) r = 1/2
1/2

1/2 ⋅ 1/2 1/4

0

Second Price with Reserve

v1

rv2

0 1/2 1



• Suppose now we have two bidders:  suppose both their values 
is drawn uniform i.i.d. from  and 


• Probability that one bidder value is above , other below


• Probability that at exactly one ball (thrown uniformly 
randomly and independently) lands in the first half


• 


• Expected revenue in this case?  


• Reserve price 

U(0,1) r = 1/2
1/2

1/2 ⋅ 1/2 + 1/2 ⋅ 1/2 = 1/2

r = 1/2

Second Price with Reserve

v1

v2

0 1/2 1

r



• Suppose now we have two bidders:  suppose both their values 
is drawn uniform i.i.d. from  and 


• Probability that both bidder values are above 


• Probability that two uniformly randomly thrown balls fall into 
the second half (when both are thrown independently)


•  = 


• Expected revenue in this case?  


• Expected value of second-highest sample when 
two samples are drawn iid from 

U(0,1) r = 1/2
1/2

1/2 ⋅ 1/2 1/4

U(0.5, 1)

Second Price with Reserve

v1

rv2

0 1/2 1



• We use the fact that a uniform random variable evenly divides 
the interval its over


• In this case the interval is  where 


• Expected value of th order statistic for  samples drawn iid 
from the range  is

[a, b] a = 0.5, b = 1
k n

[a, b]

Order Statistics:  Uniform

v1

rv2

0 1/2 1

a +
n − (k − 1)

n + 1
⋅ (b − a)



• Suppose now we have two bidders:  suppose both their values 
is drawn uniform i.i.d. from  and 


• Probability that both bidder values are above 


•  = 


• Expected revenue in this case?  


• Expected value of second-highest sample when 
two samples are drawn iid from  is 

 

U(0,1) r = 1/2
1/2

1/2 ⋅ 1/2 1/4

U(0.5, 1)
1
2

+
2 − (2 − 1)

2 + 1
⋅

1
2

=
2
3

Second Price with Reserve

v1

rv2

0 1/2 1



• Suppose now we have two bidders:  suppose both their values is drawn 
uniform i.i.d. from  and 


• Putting it all together:


•   


• Expected revenue increased!


• Without reserve ,   with a reserve of  it is 


• Question.   Can we do better?


• By using a different reserve price or using a totally different auction format?


• (Side question.) Is this auction still DSIC?


• Pretend there is an another bidder with bid 

U(0,1) r = 1/2

1
4

⋅ 0 +
1
2

⋅
1
2

+
1
4

⋅
2
3

=
5
12

1/3 1/2 5/12

r

Second Price with Reserve



• (Regular distributions).  A distribution  with density  from which value  is 

drawn is regular if  is strictly increasing


• Uniform distributions, exponential distributions and lognormal distributions are 
regular


• Irregular distribution examples:  bi-model or multi model distributions and 
distributions with sufficiently heavy tails


• Myerson's proved the following foundational result on such class of distributions


• Theorem.  If bidders values are drawn IID from a regular distribution , then 
the Vickrey (second-price) auction with a reserve price equal to the "monopoly 
price" (i.g., is DSIC and maximizes expected revenue.


• The above generalizes to all single-parameter settings!

F f x

x −
1 − F(x)

f(x)

F

argmaxr r ⋅ (1 − F(r))

Revenue Optimal Auctions



• Going from surplus maximization to revenue is not a big jump


• We just need to add a suitable reserve price!


• Revenue optimal auctions are simple


• This holds for all the single-parameter auctions we have seen, including 
sponsored ad auctions


• Surprisingly do not depend on number of bidders 


• Myerson received the 2007 Nobel Prize in part for this work

n

Takeaways

Myerson's theory can be 
generalized to non IID and non 

regular distributions as well!



Theory vs Practice
• eBay Auctions are essentially second price with a suitable "opening 

bid" (a reserve price)


• Thus the theory we developed argues that eBay auctions are the best 
possible for revenue and are strategyproof!



Reserve Prices in Yahoo!
• Does our optimal auction theory apply well in practice?


• Ostrovsky and Schwarz did a field experiment in 2008 exploring the 
affect of reserve price in Yahoo! Keyword auctions 


• Before 2008, Yahoo had been using relatively small reserve prices: 
around 1 or 5 cents and the same reserve price for all keywords



Reserve Prices in Yahoo!
• Does our optimal auction theory apply to practice?


• Ostrovsky and Schwarz did a field experiment in 2008 exploring the 
affect of reserve price in Yahoo! Keyword auctions 


• Before 2008, Yahoo had been using relatively small reserve prices: 
around 1 or 5 cents and the same reserve price for all keywords


• How did Yahoo fare when reserve prices were updated close to the 
theoretical optimal?


• Under some reasonable assumptions, the theory said the reserve 
price should be around 30-40 cents


• Instead of trying out the new prices, they used a conservative approach 
by averaging the old and new theoretically optimal prices



Reserve Prices in Yahoo!
• And it worked!


• Yahoo’s revenue went up several percent (of a huge number!)


• The change was especially effective in “thin” markets: not as 
competitive (less than 6 bidders)



Prior-Free Auctions
• Something about our optimal auction is not satisfying:  


• the auctioneer needs to know the distribution from which bidder 
values are drawn a priori


• Can we generate good revenue if we did not know bidder values?


• That is, is there an auction that does not use the distribution in its 
design, but we may use it to analyze the revenue


• There is a beautiful result from classical auction theory:

[Bulow Klemperer]   Vickrey auction (with no reserve) with  bidders generates 
just as much expected revenue as the revenue-optimal auction with  bidders!

n + 1
n



The Power of One Additional Bidder
• Implies Vickrey auction always generates  times the revenue 

of the optimal auction!


• One additional bidder has the same power as if we knew the distribution 
of bidder values ahead of time!


• This result that has anecdotal support in practice:


• Extra competition is more important than getting the details of the 
auction just right!


• More useful to generate interest from more participants, than 
learning more about their preferences!

(n − 1)/n

[Bulow Klemperer]   Vickrey auction (with no reserve) with  bidders generates 
just as much expected revenue as the revenue-optimal auction with  bidders!

n + 1
n



Bulow Klemperer:  Proof Idea
• Define a fictitious auction  that does the following:


• Simulate the revenue-optimal auction on   bidders


• If the item is not allocated, then give it to bidder  for free


• This auction has two useful properties:


• Its expected revenue with  bidders is exactly that of the optimal 
with  bidders


• It always allocates the item


• We can finish the proof by showing that:


• Claim.  Vickrey auction obtains at least as much expected revenue as any 
auction that is guaranteed to allocate the item (and thus )


•

A
n

n + 1

n + 1
n

A
R(Vickrey . (n + 1)) ≥ R(A) ≥ OPT(n)


