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Announcements and Logistics

* Assignment 4 due tonight at 11 pm
 Submit code via Github, latex answers and submit PDF via Gradescope
* Things to watch out for:

 When targeting a slot, what it every slot gives negative utility”? What is the balanced
bidding condition in that case”

* Related: make sure to never bid above value
« Seta_; =2 - ayin balanced bidding condition
« VCG base case: what should the occupant of the lowest slot pay?

 How to verity the outputs are reasonable?



Empirical Analysis Takeaways

Understand AGT theory vs practice

* Harder to reason about asymmetric strategies in theory
Humans reaching equilibrium vs auto-bidders
Greedy balanced bidding heuristic is not perfect

* [teratively tries to converge to the theoretical equilibrium

Sut, simple best-response dynamics get close even they do not converge

Rules of mechanism matter
* Simple mechanisms: complex bidding behavior

 Complex mechanism: simple bidding behavior



Assignment 5 and Midterm

* Assignment 5 will be released tomorrow

e Shorter problem set, single-person assignment

 Due a day early: Wed 11 pm instead of Thursday
* To give time for returning graded feedback before midterm

e Self-scheduled midterm 1 on March 12

* Pencil, paper exam, open book and notes

* Pick up the exam anytime between 9am - 7pm, will use a google form to coordinate

e ~3 hour exam, TCL 202 room will be reserved for those who want to use it

e Syllabus: all topics covered until Monday March 7 and Assignment 5



Last Time

 Computed the

Bayes Nash equilibrium of first price auctions

* Showed revenue equivalence of first and second price auction

 Today: show how to use revenue equivalence to solve for BN

of any single-parameter 0/1 mechanism



Myerson’s Lemma: BNE

« Consider any single-parameter 0/1 allocation with values drawn i.i.d. from distribution G
o A strategy profile s is a Bayes’ Nash equilibrium in (X, p) if and only if for all 7

(2) (monotonicity) the allocation probability x;(v;) is monotone non decreasing

(b) (payment identity) agent 1’s expected payment is given by:

Expected payment only depends on

V allocation probability!

pi(v;) = v; - x(v;) — J lxi(Z) dz
0 p(v)

Assuming that p,(0) = 0.

Proot is analogous to the DSE case.

Credit: Hartline’s Book on Mechanism Design



http://jasonhartline.com/MDnA/MDnA-ch2.pdf

Revenue Equivalence

* Most signiticant observation in auction theory

A mechanism with the same allocation in DSE (BNE) have the
same (expected) revenue!

e |[n fact, each agent has the same expected payment in
each mechanism

» Direct corollary of Myerson’s lemma If we want to increase the (expected)
revenue, changing payments or

charging more won’t do it! You
need to change how you allocate!

* The interim expected payments depend only on the
allocation probability!

* Corollary (Revenue equivalence).

* For any two mechanisms in 0-1 single-parameter setting, it
the mechanism have the same BNE allocation, then they
have the same expected revenue (assuming 0-valued

agents pay nothing)




Solving for BNE of an Auction

Myerson's lemma tells us what outcomes are possible in BNE, but not how to
solve for BNE strategies

Solving for BNE Is important: if you are a bidder in an auction, you want to
know how to bid!

Can use revenue equivalence to solve for BNE strategies in symmetric
environments

e |[f two mechanisms have the same allocation rule, they must have the same
expected payment

o solve for BNE strategies in a mechanism M, then the approach is:

e Express agents expected payment it terms of their strategy and value

e Set it equal to the expected payment in a strategically-simpler revenue
equivalent mechanism M’ (usually a “second-price implementation”)



Solving for BNE: Steps

 Step 1. Guess what the allocation might be in a Bayes-Nash equilibrium

(usually a surplus-maximizing one)

e £.g., In asingle-item auction, guess that highest bidder wins is a

SN

Step 2. Calculate the interim expected payment of an agent in a strategically-
simpler auction (usually the DSIC version, e.g. the second-price version)

 E.g., consider a 2-bidder second price auction with values i.i.d. in U(0,1):

Loser pays zero

Elp,(v))] = E[p,(vy) | 1 wins] - Pr[1 wins | + E[p,(v,) |

= E[v, | 1 wins ] - Pr[1 wins ]

= E[v, | v, <v;]-Pr[1 wins ]

G Prr1 win V, is a uniform random variable that evenly divides the
o 7 -Pril wins | interval it is on, so if v, € [0,v,] then E|v,| = v,/2

If we draw n samples i.i.d.
from U(0O, a) then the

expected value of kth highest

n—(k-—1)
n+ 1

draw is a



Solving for BNE: Steps

o Step 3. Write the expression for the interim expected payment in terms of the
strategy In the auction you are trying to solve for the BNE

* ©.g., consider a 2-bidder first price auction

Loser pays zero
E[p,(v))] = E[p;(v;) | 1 wins] - Pr[1 wins | + E[p,(vy) | 1 losest-Prfttoses]

= s;(vy) - Pr[1 wins |

» Step 4. Solve for the BNE strategy by equating the expected payments
between the two auctions

V) . -
5 Pril wins] = s,(v;) - Pr[1 wins ]

Prob of winning at a particular

si(v) = /2 value is the same in both auctions!



Solving for BNE: Steps

o Step 5. Finally, verity that the initial guess was correct and the strategy is a
symmetric BNE of the mechanism !

 We have already verified for first-price auction

* This is iImportant since the other steps are just a way to guess the
equilibrium strategy

e This process can be used for any single-parameter 0/1 auction (not just
single-item auction)

e et us apply this to an all-pay auction



All Pay Auctions

 Revenue equivalence governs all kinds of auctions

 Consider a single-item all pay sealed-bid auction, where the highest bidder
wins but everyone pays their bid

e Thus, utility of participating can be negative in this case
e Participating has a cost!

* Can you think of examples of this setting in practice?



Solving for BNE: All Pay egardless of wining or

losing you pay your bid
. Example: All-pay auction with 2 bidders i.i.d. U(0,1) & FOU P Y

o Step 1. Assume highest bidder wins
Vi

e Step 2. Interim expected payment in second-price auction is El 2r[1 wins |

e Step 3. Interim expected payment in all-pay auction”

Elp,(v))] = E[p;(vy) | 1 wins] - Pr[1 wins | + E[p,(v,) | 1 loses] - Pr[1 loses |

= s5,(vp) - Prl wins ] + s,(v;) - Pr[1 loses]

= 51(v)
e Step 4. Set them equal: here we need to compute the probability of winning

2
1% 1%
ESPip,(v)] = Py < vl ==

2



Solving for BNE: All Pay

. Example: All-pay auction with 2 bidders i.i.d. U(0,1)

Step 4. Set the interim expected payment equal to find the BNE strategy

2

s1(vy) = Y

Step 5. Verity that this a symmetric Bayes Nash of the auction

Guess for n-bidder symmetric BNE?

(o

n l

HW problem: verity that this is a symmetric BN

 Same way as we did for first-price auctions

= of all-pay auctions



Bayesian Analysis Challenges

e S0 far we considered symmetric settings:

e Values are drawn 1.1.d. from the same distribution

e For these settings, Bayes Nash equilibrium are pretty well understood
* They also lead to efficient outcomes: surplus maximizing outcomes
* For asymmetric settings:

e [nformation asymmetry: e.qg. different companies do different levels of
‘market research’

e Can still study BNE but often more complicated: no closed form solutions
and multiple (some inefficient) equilibrium

 Near CS-driven approach: study approximation bounds (price of anarchy)
of these auctions



Price of Anarchy: Auctions

e 2017 Survey

The Price of Anarchy in Auctions

Tim Roughgarden TIMQCS.STANFORD.EDU
Computer Science Department, Stanford University,

Stanford, CA USA

Vasilis Syrgkanis VASY@MICROSOFT.COM
Microsoft Research, 1 Memorial Drive,
Cambridge, MA USA

Eva Tardos EVAQCS.CORNELL.EDU
Computer Science Department, Cornell University,

Ithaca, NY USA

Abstract

This survey outlines a general and modular theory for proving approximation guaran-
tees for equilibria of auctions in complex settings. This theory complements traditional
economic techniques, which generally focus on exact and optimal solutions and are accord-
ingly limited to relatively stylized settings.

We highlight three user-friendly analytical tools: smoothness-type inequalities, which
immediately yield approximation guarantees for many auction formats of interest in the
special case of complete information and deterministic strategies; extension theorems,
which extend such guarantees to randomized strategies, no-regret learning outcomes, and
incomplete-information settings; and composition theorems, which extend such guarantees
from simpler to more complex auctions. Combining these tools yields tight worst-case
approximation guarantees for the equilibria of many widely-used auction formats.



Price of Anarchy: Auctions

* Even with two bidders and asymmetric distributions, the BNE can be very

complicated:

EXAMPLE 2.2. (Two bidders with uniform [0, 1] and uniform [0, 2] distributions (Vickrey,
1961)) One can verify that the following bidding functions constitute an equilibrium in this

example (see also Krishna, 2002):

4 302
s1(v1) = 3,01(1—\/1—41)

4 3v3
82(’1)2)—3/02(\/1+4—1>

* [nstead of trying to find the Bayes Nash, the literature quantifies the
approximation ratio of any Bayes Nash equilibrium using price of anarchy

 Theorem (Price of Anarchy of First-Price Single-ltem Auctions). The price of
anarchy of the first-price single-item auction format is at least 1 — 1/e = 0.63.

e |ustifies conventional wisdom about such auctions



Revenue Maximization



Let's Talk about Revenue

e 50, far revenue is incidental: payment was necessary to impose truthful behavior
o Start with one bidder with private value v and one item
* \What is the unique DSIC surplus maximizing auction for this setting”
» Allocate the item to the the bidder
» Charge critical bid: zero
* Thus, our DSIC surplus-maximizing auction has zero revenue
* Any ideas on how we can improve the revenue?

e Post a minimum price
* [gnore bids below it: don't sell O
e |f bid is above it, charge posted price

V




Single Bidder Single Item

o Suppose we knew the bidders value v (maximum willingness to pay)

o What should the posted price r be”

« r =V (also called reservation/reserve price or the monopoly price)
o Unfortunately we don’t know v
« \What are the tradeoffs of setting r too high or too low?

o Set it too high, might not sell the item

e Set it too high, might get less revenue than is possible
« What if the seller knew the distribution F
from which v Is drawn”?

V




Posted Price for One Bidder

o SUPPOSe we set the reserve price to r and the value v of the bidder is

drawn from a distribution with CDF F
Notice that we sometimes don’t sell the item,

i.e. (this is not surplus maximizing): revenue
» Otherwise we sell the item at price r equivalence says we must allocate item

differently to generate more revenue

e [TV < r: nosale

 What is the expected revenue?

E[R] = r - Pr(sale)+0 - Pr(no sale)
=r-(1—-F(r))

e Ifv ~iid UQ,1), then F(r) =r

E|IR] = r(1 — r), maximized atr = 1/2 O
 Achieving an expected revenue of 1/4 v : :

I




Second Price with Reserve

e SUPPOSe now we have two bidders: suppose both their values
is drawn uniform i.i.d. from U(0,1) and no reserve price

* \We calculated the revenue of second price auction without
reserve last lecture
n—1 |

. El] = n+1 =§

e Can we improve this revenue it we have a reserve price?

e Supposer = 1/2 V
2

. —————

O
£
O

0 1/2 | Vi i



Second Price with Reserve

e SUPPOSe now we have two bidders: suppose both their values
is drawn uniform i.i.d. from U(0,1) and r = 1/2

« Probability that both bidder values are below 1/2

* Probability that two uniformly randomly thrown balls tall into
the first halt (when both are thrown independently)

e 1/2-1/2=1/4

 Expected revenue in this case? O




Second Price with Reserve

e SUPPOSe now we have two bidders: suppose both their values
is drawn uniform i.i.d. from U(0,1) and r = 1/2

o Probability that one bidder value is above 1/2, other below

e Probabi
random

ity that at exactly one
v and independently)

oall (thrown uni

formly

ands in the firss

e 1/2-1/24+1/2-1/2=1/2

* Expected revenue in this case?

» Reserve pricer = 1/2

- half

vy
O

Vi




Second Price with Reserve

e SUPPOSe now we have two bidders: suppose both their values
is drawn uniform i.i.d. from U(0,1) and r = 1/2

 Probability that both bidder values are above 1/2

* Probability that two uniformly randomly thrown balls tall into
the second halt (when both are thrown independently)

e 1/2-1/2=1/4

* Expected revenue in this case? O

N

» Expected value of second-highest sample when Vz
two samples are drawn iid from U(0.5, 1)

0 1/2 1 A



Order Statistics: Uniform

 We use the tfact that a uniform random variable evenly divides
the interval its over

e In this case the interval is [a, b] wherea = 0.5, b =1

 Expected value of kth order statistic for n samples drawn iid
from the range [a, b] is

n—(k—1)
Cl+n—+1'(b—a) Vz O

0 1/2 1



Second Price with Reserve

e SUPPOSe now we have two bidders: suppose both their values
is drawn uniform i.i.d. from U(0,1) and r = 1/2

 Probability that both bidder values are above 1/2
e 1/2-1/2=1/4

* Expected revenue in this case?

* Expected value of second-highest sample when
two samples are drawn iid from U(0.3, 1) is

1 2-2=1) 1 2

2T o1 273 VZ &
O

—_—

0 1/2 1 | Wasa




Second Price with Reserve

e Suppose now we have two bidders: suppose both their values is drawn
uniform i.i.d. from U(0,1) and r = 1/2

* Putting it all together:
1 1 1 1 2 S
0

. 4+ — . | — =
4 2 2 4 3 12

 Expected revenue increased!

 Without reserve 1/3, with areserve of 1/2itis 5/12
* Question. Can we do better?

* By using a different reserve price or using a totally different auction format?
» (Side question.) Is this auction still DSIC?

e Pretend there is an another bidder with bid r



Revenue Optimal Auctions

+ (Regular distributions). A distribution I with density f from

| | I -Fx) .
drawn is regular it x — s strictly increasing

J(x)

which value x Is

« Uniform distributions, exponential distributions and lognormal distributions are

regular

* [rregular distribution examples: bi-model or multi model distributions and

distributions with sufficiently heavy tails

 Myerson's proved the following foundational result on such class of distributions

« Theorem. |f bidders values are drawn |ID from a regular dis

the Vickrey (second-price) auction with a reserve price equa

ribution F, then

to the "'monopoly

price" (i.g., argmax_ r - (1 — F(r))is DSIC and maximizes expected revenue.

* The above generalizes to all single-parameter settings!



Takeaways

e (Going from surplus maximization to revenue is not a big jump
 We just need to add a suitable reserve price!
* Revenue optimal auctions are simple

* This holds for all the single-parameter auctions we have seen, including
sponsored ad auctions

o Surprisingly do not depend on number of bidders n
Myerson's theory can be

generalized to non |ID and non
regular distributions as well!

* Myerson received the 2007 Nobel Prize in part for this work



Theory vs Practice

 eBay Auctions are essentially second price with a suitable "opening
bid" (a reserve price)

* Thus the theory we developed argues that eBay auctions are the best
possible for revenue and are strategyproof!




Reserve Prices In Yahoo!

* Does our optimal auction theory apply well in practice”

* Ostrovsky and Schwarz did a field experiment in 2008 exploring the
affect of reserve price in Yahoo! Keyword auctions

» Before 2008, Yahoo had been using relatively small reserve prices:
around 1 or 5 cents and the same reserve price for all keywords

Reserve Prices in Internet Advertising Auctions:
A Field Experiment*

Michael Ostrovsky' Michael Schwarz? ,




Reserve Prices In Yahoo!

* Does our optimal auction theory apply to practice?

* Ostrovsky and Schwarz did a field experiment in 2008 exploring the
affect of reserve price in Yahoo! Keyword auctions

» Before 2008, Yahoo had been using relatively small reserve prices:
around 1 or 5 cents and the same reserve price for all keywords

 How did Yahoo fare when reserve prices were updated close to the
theoretical optimal?

 Under some reasonable assumptions, the theory said the reserve
orice should be around 30-40 cents

* [nstead of trying out the new prices, they used a conservative approach
Oy averaging the old and new theoretically optimal prices

YAHOQO!



Reserve Prices In Yahoo!

- And It worked!
* Yahoo's revenue went up several percent (of a huge number!)

 The change was especially effective in “thin” markets: not as
competitive (less than 6 bidders)

On the [revenue per search/ front I mentioned we grew 11% year-over-year in the quarter /.. .|,
so thats north of a 20% gap search growth rate in the US and that is a factor of, attributed
to rolling out a number of the product upgrades we’ve been doing. [Market Reserve Pricing/

was probably the most significant in terms of its impact in the quarter. We had a full quarter
impact of that in ()3, but we still have the benefit of rolling that around the world.

Sue Decker, President, Yahoo! Inc. Q3 2008 Earnings Call.!s:1?




Prior-Free Auctions

* Something about our optimal auction is not satisfying:

e the auctioneer needs to know the distribution from which bidder
values are drawn a priori

e Can we generate good revenue if we did not know bidder values”

e Thatis, Is there an auction that does not use the distribution In Its
design, but we may use it to analyze the revenue

* There is a beautiful result from classical auction theory:

[Bulow Klemperer] Vickrey auction (with no reserve) with n + 1 bidders generates
just as much expected revenue as the revenue-optimal auction with n bidders!



The Power of One Additional Bidder

 Implies Vickrey auction always generates (n — 1)/n times the revenue
of the optimal auction!

* One additional bidder has the same power as it we knew the distribution
of bidder values ahead of time!

* This result that has anecdotal support in practice:

e Extra competition is more important than getting the details of the
auction just rignt!

 More useful to generate interest from more participants, than
earning more about their preferences!

[Bulow Klemperer] Vickrey auction (with no reserve) with n + 1 bidders generates
just as much expected revenue as the revenue-optimal auction with n bidders!



Bulow Klemperer: Proof ldea

 Define a fictitious auction A that does the following:

o Simulate the revenue-optimal auction on n bidders

. |f the item is not allocated, then give it to bidder n + 1 for free
* This auction has two useful properties:

o |ts expected revenue with n + 1 bidders is exactly that of the optimal
with n bidders

* |t always allocates the item
* We can finish the proof by showing that:

e Claim. Vickrey auction obtains at least as much expected revenue as any
auction that is guaranteed to allocate the item (and thus A)

» R(Vickrey.(n+ 1)) > R(A) > OPT(n)



