CSCI 357: Algorithmic Game Theory

 Lecture 8: First Price AuctionShikha Singh

Announcements and Logistics

- Assignment 4 out by and due Thurs 11 pm
- Submit code via Github, latex answers and submit PDF
- Assignment looks really long but a lot of it is just setup!
- Based on lectures 6 and 7 on GSP vs VCG
- Feedback from HW 3:
- Absorbing notations in AGT, esp auction theory can be a lot
- Graduate level topic! Studying research from last two decades
- Gets better in other topics of the course: promise!!!!
- Happy to slow down, encourage interruptions and questions

Questions?

Proof Update

$$
u_{1}=\alpha_{1} v_{1}-\alpha_{1} b_{2} \geqslant \overbrace{2} v_{1}-\alpha_{2} b_{3}
$$

Use $B B$ condition for b_{2} :

$$
\alpha_{1} v_{2}-\alpha_{1} b_{2}=\alpha_{2} v_{2}-\alpha_{2} b_{3}
$$

Substitute $\alpha_{1} b_{2}$ in u_{1}

$$
\begin{aligned}
& \text { ante } \alpha_{1} b_{2} \text { in } u_{1} \\
& \alpha_{1} v_{1}+\alpha_{2} v_{2}-\alpha_{2} b_{3}-\alpha_{1} v_{2} \geqslant \alpha_{2} v_{1}-\alpha_{1} b_{3} \\
& \alpha_{1}\left(v_{1}-v_{2}\right) \geqslant \alpha_{2}\left(v_{1}-\psi_{2}\right) \text { since } v_{1} \geqslant v_{2}
\end{aligned}
$$

$\alpha_{1} \geqslant \alpha_{2}$ this is true! [

Last Time \& Outline

- Wrapped up discussion on sponsored ad auctions

> Week 6: Matching Markets w/o Money

- An example of how theory interacts with practice
- Talked briefly about first price auction and challenges
- This week: analyze first price auctions
- Scratch the surface of Bayesian auction analysis
- Hope is to wrap up direct-revelation auction design this week!
- Next week is the last week on mechanism design with money:

Week 5: Matching Markets w Money

Week 4: Bayesian Analysis \& General Mechanism Design

Week 3:Application : Sponsored Ad Markets

- Matching markets / ascending clock mechanisms
- Application: spectrum auctions

Week 2: DSIC Auctions

Week I: Game Theory

First-Price vs Second Price

Both the first-price and second-price auction (at equilibrium) generate the same (expected) revenue!

To show this, we need to analyze firstprice auction, which is an incompleteinformation or "Bayesian game"

First Price Auctions

Bayesian Auction \& Assumptions

- Game of incomplete information: bidders values (and thus utilities) are private
- No dominant strategy equilibrium, need to analyze using Bayesian Nash Eq
- Assume bidders have independent private value (IPV) drawn independently and identically from the distribution G
- We say values are drawn i.i.d from G
- The distribution G is common knowledge
- Every bidder knows the distributions and knows that others know it as well
- Often called "common prior"
- For first-price auction: we will further assume values are drawn i.i.d from the uniform distribution on [0,1]

Continuous Probability Review

- A continuous random variable takes a range of values, which can be finite or infinite
- (Definition) A random variable X is continuous if there is a function $f(x)$ such that for any $c \leq d$ we have

$$
\operatorname{Pr}(c \leq X \leq d)=\int_{c}^{d} f(x) d x
$$

- Function $f(x)$ is called the probability density function (pdf)

$$
P(c \leq X \leq d)=\text { area under the graph between } c \text { and } d
$$

Continuous Probability Review

- (Definition) The cumulative distribution function (cdf) F of a continuous random variable X denotes the probability that it is at most a certain value

$$
F(k)=\operatorname{Pr}(X \leq k)=\int_{-\infty}^{k} f(x) d x
$$

where $f(x)$ is the probability density function of X

- In practice, we often say X has distribution or is drawn from distribution $F(x)$ rather than X has cumulative distribution function $F(x)$

Uniform Distribution

- Models situations where all outcomes in the range have equal probability
- Probability density function of a continuous uniform distribution on $[a, b]$

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { for } a \leq x \leq b \\ 0 & \text { for } x<a \text { or } x>b\end{cases}
$$

- Cumulative density function of a continuous uniform distribution on $[a, b]$

$$
F(k)=\operatorname{Pr}(x \leq k)= \begin{cases}0 & \text { if } k \geq 0 \\ \frac{k-a}{b-a} & \text { if } a \leq k \leq b \\ 1 & \text { if } k>b\end{cases}
$$

Uniform Distribution on [0, 1]

- Models situations where all outcomes in the range have equal probability
- Probability density function of a continuous uniform distribution on $[0,1]$

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Cumulative density function of a continuous uniform distribution on $[a, b]$

$$
F(k)=\operatorname{Pr}(x \leq k)= \begin{cases}0 & \text { if } k \geq 0 \\ k & \text { if } a \leq k \leq b \\ 1 & \text { if } k>b\end{cases}
$$

Bayesian Nash Equilibrium

- A strategy or plan of action for each player (as a function of types) should be such that it maximizes each players expected utility
- expectation is over the private values of other players
- Given a Bayesian game with independent private values v_{-i}, i 's interim expected utility for a strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ is

$$
\mathbb{E}\left[u_{i}(s)\right]=\sum_{v_{-i}} u_{i}(s) \cdot \operatorname{Pr}\left(v_{-i}\right)
$$

- A strategy profile \boldsymbol{s} is a pure strategy Bayes Nash equilibrium if no player can increase their interim expected utility by unilaterally changing their strategy s_{i}

Strategy Assumptions

- Recall: strategy s_{i} is a function that maps their value to their bid b :
- $s_{i}\left(v_{i}\right)=b_{i}$
- We assume that the strategy of all bidders in the auctions we study
- Is a strictly increasing differentiable function: gives us that the bidder with higher value will also provide a higher bid (no ties)
- $s_{i}\left(v_{i}\right) \leq v_{i}$ for all v_{i} and bidders i : that is, bidders can "shade" down their bids but will never bid above their true values
- Also implies $s_{i}(0)=0$
- These assumptions are just to simplify analysis

First-Price Auction: Two Bidders

- Suppose v_{1}, v_{2} are both drawn i.i.d. from the uniform distribution on $[0,1]$

How to set b_{1} to maximize expected utility?

First-Price Auction: Two Bidders

- Suppose both bidders bid symmetrically some factor of their value $s\left(v_{i}\right)=\alpha \cdot v_{i}$

How to set b_{1} to maximize expected utility?

First-Price Auction: Two Bidders

- Suppose both bidders bid symmetrically some factor of their value $s\left(v_{i}\right)=\alpha \cdot v_{i}$

How to set b_{1} to maximize expected utility?

First-Price Auction: Two Bidders

- Suppose both bidders bid symmetrically some factor of their value $s\left(v_{i}\right)=\alpha \cdot v_{i}$

How to set b_{1} to maximize expected utility?

First-Price Auction: Two Bidders

- $\mathbb{E}\left[u_{1}\right]=\left(v_{1}-b_{1}\right)\left(b_{1} / \alpha\right)$: how to set b_{1} to maximize expected payment?

How to set b_{1} to maximize expected utility?

First-Price Auction: Two Bidders

- $\mathbb{E}^{\prime}\left[u_{1}\right]=(1 / \alpha)\left(v_{1}-2 b_{1}\right)=0$, that is, $b_{1}=v_{1} / 2$

How to set b_{1} to maximize expected utility?

First-Price Auction: Two Bidders

- Theorem. Assume two bidders with their values drawn i.i.d. from uniform distribution on $[0,1]$, then the strategy $s\left(v_{i}\right)=v_{i} / 2$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- Proof. Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- We calculate agent 1 's expected utility who has value v_{1} and bid b_{1}
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[1\right.$ wins with bid $\left.b_{1}\right]+0 \cdot \operatorname{Pr}\left[1\right.$ loses with bid $\left.b_{1}\right]$

First-Price Auction: Two Bidders

- Theorem. Assume two bidders with their values drawn i.i.d. from uniform distribution on $[0,1]$, then the strategy $s\left(v_{i}\right)=v_{i} / 2$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- Proof. Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- We calculate agent 1 's expected utility who has value v_{1} and bid b_{1}
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[1\right.$ wins with bid $\left.b_{1}\right]$ $=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[b_{2} \leq b_{1}\right]$

First-Price Auction: Two Bidders

- Theorem. Assume two bidders with their values drawn i.i.d. from uniform distribution on $[0,1]$, then the strategy $s\left(v_{i}\right)=v_{i} / 2$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- Proof. Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- We calculate agent 1 's expected utility who has value v_{1} and bid b_{1}
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[1\right.$ wins with bid $\left.b_{1}\right]$ $=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[b_{2} \leq b_{1}\right]$
$=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[v_{2} / 2 \leq b_{1}\right]$

First-Price Auction: Two Bidders

- Theorem. Assume two bidders with their values drawn i.i.d. from uniform distribution on $[0,1]$, then the strategy $s\left(v_{i}\right)=v_{i} / 2$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- Proof. Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- We calculate agent 1 's expected utility who has value v_{1} and bid b_{1}
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[1\right.$ wins with bid $\left.b_{1}\right]$

$$
=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[b_{2} \leq b_{1}\right] \quad \text { Here } v_{1}, b_{1} \text { are fixed }
$$

$$
=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[v_{2} / 2 \leq b_{1}\right]
$$

and v_{2} is a random variable

$$
=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[v_{2} \leq 2 b_{1}\right]
$$

First-Price Auction: Two Bidders

- Theorem. Assume two bidders with their values drawn i.i.d. from uniform distribution on $[0,1]$, then the strategy $s\left(v_{i}\right)=v_{i} / 2$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- Proof. Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- We calculate agent 1 's expected utility who has value v_{1} and bid b_{1}
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[1\right.$ wins with bid $\left.b_{1}\right]$

$$
=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[b_{2} \leq b_{1}\right]
$$

$$
=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[v_{2} / 2 \leq b_{1}\right]
$$

$$
=\left(v_{1}-b_{1}\right) \cdot \operatorname{Pr}\left[v_{2} \leq 2 b_{1}\right]
$$

$$
=\left(v_{1}-b_{1}\right) \cdot F\left(2 b_{1}\right)=\left(v_{1}-b_{1}\right) \cdot 2 b_{1}
$$

First-Price Auction: Two Bidders

- Proof (Cont). Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- Agent 1 's expected utility who has value v_{1} and bid b_{1} when she wins
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot 2 b_{1}=2 v_{1} b_{1}-2 b_{1}^{2}$

First-Price Auction: Two Bidders

- Proof (Cont). Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- Agent 1 's expected utility who has value v_{1} and bid b_{1} when she wins
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot 2 b_{1}=2 v_{1} b_{1}-2 b_{1}^{2}$
- Agent 1 with value v_{1} should set b_{1} to maximize $2 v_{1} b_{1}-2 b_{1}^{2}$ as a function of b_{1}
- Differentiate and set derivate to zero (also check second order condition)

First-Price Auction: Two Bidders

- Proof (Cont). Assume agent 2 bids using $s($.$) , that is, b_{2}=v_{2} / 2$
- Agent 1 's expected utility who has value v_{1} and bid b_{1} when she wins
- $E\left[u_{1}\right]=\left(v_{1}-b_{1}\right) \cdot 2 b_{1}=2 v_{1} b_{1}-2 b_{1}^{2}$
- Agent 1 with value v_{1} should set b_{1} to maximize $2 v_{1} b_{1}-2 b_{1}^{2}$ as a function of b_{1}
- Differentiate and set derivate to zero (also check second order condition)
- $E^{\prime}\left[u_{1}\right]=2 v_{1}-4 b_{1}=0$, that is, $b_{1}=v_{1} / 2$

First-Price Auction: n Bidders

- Let us use the same approach to figure out the symmetric Bayes Nash equilibrium for n bidders
- Suppose every bidder $j \neq 1$ uses strategy $s_{j}=\alpha(n) \cdot v_{j}$
- Class exercise. Can you write the expression for expected utility of bidder 1 and figure out what value of b_{1} maximizes it?
- Fix b_{1}, v_{1}, write $\mathbb{E}\left(u_{1}\right)$ as a function of them
- Each v_{j} for $j \neq 1$ is a random variable i.i.d. in uniform $[0,1]$
- Deduce the value of $\alpha(n)$ from this

First-Price Auction: n Bidders

- Suppose we increase the number of bidders, how should the equilibrium strategy adjust to more competition?
- Theorem. Assume each of the n bidders have values drawn i.i.d. from uniform distribution on $[0,1]$. Then, the strategy $s\left(v_{i}\right)=\frac{n-1}{n} \cdot v_{i}$ is a symmetric Bayes Nash equilibrium of the sealed-bid first price auction.
- Proof. We can generalize the 2-bidder proof
- On board. Also in Parkes and Seuven book.
- Takeaway: the more the competition, the more the bidders need to bid closer to their value if they want to win

Empirical Bids vs Equilibrium

Valuation, Bid: 2-person FP auction and Bid: 3-person FP auction

Bid: 2-person FP auction
Bid: 3-person FP auction

First-Price Auction: Guarantees

- Turns out this Bayes Nash equilibrium is unique
- Generalizes to arbitrary i.i.d distributions
- Is linear time
- Does it maximize surplus?
- Bids in Bayes Nash equilibrium are order-preserving: that is, for values $v_{1} \geq v_{2} \geq \ldots \geq v_{n}$, the equilibrium bids are $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$
- The item is allocated to the highest bidder, thus to the agent with the maximum valuation
- Maximizes surplus (at equilibrium)
- Now, we want to compare the revenue of FP and SP auction

Order Statistics

- To do so, we need to define order statistics
- Let $X_{1}, X_{2}, \ldots X_{n}$ be n independent samples drawn identically from the uniform distribution on $[0,1]$
- The first-order statistic $X_{(1)}$ is the maximum value of the samples, the second-order statistic $X_{(2)}$ is the secondmaximum value of the samples, etc
- The expected value of the k th order statistic for n i.i.d samples from $U(a, b)$ is

$$
E\left[X_{(k)}\right]=a+\frac{n-(k-1)}{n+1} \cdot(b-a)
$$

- Remember: a uniform random variable evenly divides the interval it is over

Revenue

- Theorem. If bidder's values are uniform i.i.d., then the expected revenue of the first-price auction is equal to that of the second-price auction at equilibrium.
- Proof. Let $E\left[R_{1}\right]$ and $E\left[R_{2}\right]$ be the expected revenues of the first and secondprice auction.
- In second-price auction, the bidder with the highest value wins and pays second-highest value
- $E\left[R_{2}\right]=$ expected value of second-order statistic

$$
=\frac{n-1}{n+1}
$$

. In FP auction, bidders bid $s\left(v_{i}\right)=\frac{n-1}{n} \cdot v_{i}$ and highest bidder pays their bid

Revenue

- Theorem. If bidder's values are uniform i.i.d., then the expected revenue of the first-price auction is equal to that of the second-price auction at equilibrium.
- Proof. Let $E\left[R_{1}\right]$ and $E\left[R_{2}\right]$ be the expected revenues of the first and secondprice auction.
- In FP auction, bidders bid $s\left(v_{i}\right)=\frac{n-1}{n} \cdot v_{i}$ and highest bidder pays their bid
. $E\left[R_{1}\right]=E\left[b_{\max }\right]=E\left[\frac{n-1}{n} \cdot v_{\max }\right]$

Revenue

- Theorem. If bidder's values are uniform i.i.d., then the expected revenue of the first-price auction is equal to that of the second-price auction at equilibrium.
- Proof. Let $E\left[R_{1}\right]$ and $E\left[R_{2}\right]$ be the expected revenues of the first and secondprice auction.
. In FP auction, bidders bid $s\left(v_{i}\right)=\frac{n-1}{n} \cdot v_{i}$ and highest bidder pays their bid
. $E\left[R_{1}\right]=E\left[b_{\max }\right]=E\left[\frac{n-1}{n} \cdot v_{\max }\right]=\frac{n-1}{n} E\left[v_{\max }\right]=\frac{n-1}{n} \cdot \frac{n}{n+1}=\frac{n-1}{n+1}$
- The last step uses linearity of expectation

$$
\text { - } E(a \cdot X+b \cdot Y)=a \cdot E(X)+b \cdot E(Y) \text { where } a \text { and } b \text { are constants }
$$

Myerson's Lemma: DSE vs BNE

- Remember all DSE are BNE but not vice versa
- When characterizing DSE, the game was deterministic and so we can talk about the actual allocation and payment
- When characterizing BNE: $x_{i}\left(v_{i}\right)$ and $p_{i}\left(v_{i}\right)$ refer to the probability of allocation and the expected payments
- Because a game played by agents with values drawn from a distribution will inherently, from agent i 's perspective have a randomized outcome and payment
- Myerson's lemma also characterizes BNE in single-parameter mechanisms
- If two auctions have the same distribution of agent values and same way of allocation (at BNE), then Myerson's lemma tells us something amazing about them

Myerson's Lemma for BNE

- Informal statement:
- A strategy profile s is a Bayes' Nash equilibrium in (\mathbf{x}, \mathbf{p}) if and only if for all i
(a) (monotonicity) the allocation probability $x_{i}\left(v_{i}\right)$ is monotone non decreasing
(b) (payment identity) agent i 's expected payment is given by:

$$
p_{i}\left(v_{i}\right)=v_{i} \cdot x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z
$$

Assuming that $p_{i}(0)=0$.
Proof is analogous to the DSE case.

Revenue Equivalence

- Most significant observation in auction theory
- A mechanism with the same allocation in DSE (BNE) have the same (expected) revenue!
- In fact, each agent has the same expected payment in each mechanism
- Direct corollary of Myerson's lemma
- The interim expected payments depend only on the allocation probability!

- Corollary (Revenue equivalence).

- For any two mechanisms in 0-1 single-parameter setting, if the mechanism have the same BNE allocation, then they have the same expected revenue (assuming 0 -valued agents pay nothing)

If we want to increase the (expected) revenue, changing payments or charging more won't do it! You need to change how you allocate!

More Next Time!

