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• Assignment 4 out by and due Thurs 11 pm

• Submit code via Github, latex answers and submit PDF 

• Assignment looks really long but a lot of it is just setup!   

• Based on lectures 6 and 7 on GSP vs VCG  

• Feedback from HW 3: 

• Absorbing notations in AGT, esp auction theory can be a lot 

• Graduate level topic!  Studying research from last two decades 

• Gets better in other topics of the course:  promise!!!! 

• Happy to slow down, encourage interruptions and questions

Announcements and Logistics

Questions?



Proof Update



• Wrapped up discussion on sponsored ad auctions 

• An example of how theory interacts with practice  

• Talked briefly about first price auction and challenges 

• This week: analyze first price auctions  

• Scratch the surface of Bayesian auction analysis 

• Hope is to wrap up direct-revelation auction design this week! 

• Next week is the last week on mechanism design with money:    

• Matching markets / ascending clock mechanisms 

• Application: spectrum auctions

Last Time & Outline

Week 1: Game Theory

Week 2:  DSIC Auctions

Week 4:  Bayesian 
Analysis & General 
Mechanism Design

Week 3: Application : 
Sponsored Ad Markets

Week 5: Matching 
Markets w Money

Week 6: Matching 
Markets w/o Money



First-Price vs Second Price

Both the first-price and second-price auction (at 
equilibrium) generate the same (expected) revenue!

To show this, we need to analyze first-
price auction, which is an incomplete-

information or "Bayesian game"



First Price Auctions



Bayesian Auction & Assumptions
• Game of incomplete information:   bidders values (and thus utilities) are private 

• No dominant strategy equilibrium, need to analyze using Bayesian Nash Eq 

• Assume bidders have independent private value (IPV) drawn independently 
and identically from the distribution  

• We say values are drawn i.i.d from  

• The distribution  is common knowledge

• Every bidder knows the distributions and knows that others know it as well 

• Often called "common prior" 

• For first-price auction:  we will further assume values are drawn i.i.d from the 
uniform distribution on 

G

G
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[0,1]



Continuous Probability Review
• A continuous random variable takes a range of values, which can be finite or infinite 
• (Definition) A random variable  is continuous if there is a function  such that for 

any  we have  
 

     

• Function  is called the probability density function (pdf)

X f(x)
c ≤ d

Pr(c ≤ X ≤ d) = ∫
d

c
f(x)dx

f(x)



Continuous Probability Review
• (Definition) The cumulative distribution function (cdf)  of a continuous random 

variable  denotes the probability that it is at most a certain value  

 

      

 

where  is the probability density function of  

• In practice, we often say  has distribution or is drawn from distribution  rather 

than  has cumulative distribution function 

F
X

F(k) = Pr(X ≤ k) = ∫
k

−∞
f(x)dx

f(x) X

X F(x)
X F(x)



Uniform Distribution
• Models situations where all outcomes in the range have 

equal probability  
• Probability density function of a continuous uniform 

distribution on   

       
• Cumulative density function of a continuous uniform 

distribution on   

[a, b]

[a, b]



Uniform Distribution on [0, 1]
• Models situations where all outcomes in the range have equal 

probability  
• Probability density function of a continuous uniform distribution 

on   
       
 
 
 

• Cumulative density function of a continuous uniform 
distribution on   

[0,1]

[a, b]

0 1

1

100

F(k) = k



Bayesian Nash Equilibrium 
• A strategy or plan of action for each player (as a function of types) should be such that 

it maximizes each players expected utility 

• expectation is over the private values of other players 

• Given a Bayesian game with independent private values  , 's interim expected 
utility for a strategy profile  is  
 

                               

• A strategy profile  is a pure strategy Bayes Nash equilibrium if no player can 
increase their interim expected utility by unilaterally changing their strategy 

v−i i
s = (s1, …, sn)

𝔼[ui(s)] = ∑
v−i

ui(s) ⋅ Pr(v−i)

s
si



Strategy Assumptions
• Recall: strategy  is a function that maps their value to their bid : 

•  

• We assume that the strategy of all bidders in the auctions we study  

• Is a strictly increasing differentiable function:  gives us that the bidder with 
higher value will also provide a higher bid (no ties) 

•   for all  and bidders :  that is, bidders can "shade" down their 
bids but will never bid above their true values  

• Also implies  

• These assumptions are just to simplify analysis

si b

si(vi) = bi

si(vi) ≤ vi vi i

si(0) = 0



• Suppose  are both drawn i.i.d. from the uniform distribution on v1, v2 [0,1]

First-Price Auction: Two Bidders

Pr(b1 < b2) Pr(b1 ≥ b2)

 loses & pays v1 0

Utility:  0 Utility:  v1 − b1

 wins & pays v1 b1

How to set  to maximize expected utility?b1



• Suppose both bidders bid symmetrically some factor of their value s(vi) = α ⋅ vi

First-Price Auction: Two Bidders

 loses & pays v1 0

Utility:  0 Utility:  v1 − b1

 wins & pays v1 b1

How to set  to maximize expected utility?b1

Pr(b1 < b2) Pr(v2α ≤ b1)



• Suppose both bidders bid symmetrically some factor of their value s(vi) = α ⋅ vi

First-Price Auction: Two Bidders

Pr(v2 ≤ (b1/α))

 loses & pays v1 0

How to set  to maximize expected utility?b1

Utility:  0 Utility:  v1 − b1

 wins & pays v1 b1

Pr(b1 < b2)



• Suppose both bidders bid symmetrically some factor of their value s(vi) = α ⋅ vi

First-Price Auction: Two Bidders

 loses & pays v1 0

How to set  to maximize expected utility?b1

Utility:  0 Utility:  v1 − b1

 wins & pays v1 b1

Pr = b1/αPr(b1 < b2)



• :   how to set  to maximize expected payment?𝔼[u1] = (v1 − b1)(b1/α) b1

First-Price Auction: Two Bidders

 loses & pays v1 0

How to set  to maximize expected utility?b1

Utility:  0 Utility:  v1 − b1

 wins & pays v1 b1

Pr(b1 < b2) Pr = b1/α



• ,   that is,    𝔼′ [u1] = (1/α)(v1 − 2b1) = 0 b1 = v1/2

First-Price Auction: Two Bidders

 loses & pays v1 0

How to set  to maximize expected utility?b1

Utility:  0 Utility:  v1 − b1

 wins & pays v1 b1

Pr(b1 < b2) Pr = b1/α



First-Price Auction: Two Bidders
• Theorem.  Assume two bidders with their values drawn i.i.d. from uniform 

distribution on , then the strategy  is a symmetric Bayes Nash 

equilibrium of the sealed-bid first price auction. 

• Proof.  Assume agent  bids using , that is,  

• We calculate agent 's expected utility who has value  and bid   

•  

           

 

[0,1] s(vi) = vi/2

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ Pr[1 wins with bid b1] +0 ⋅ Pr[1 loses with bid b1]



First-Price Auction: Two Bidders
• Theorem.  Assume two bidders with their values drawn i.i.d. from uniform 

distribution on , then the strategy  is a symmetric Bayes Nash 

equilibrium of the sealed-bid first price auction. 

• Proof.  Assume agent  bids using , that is,  

• We calculate agent 's expected utility who has value  and bid  

•  

            

 

[0,1] s(vi) = vi/2

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ Pr[1 wins with bid b1]
= (v1 − b1) ⋅ Pr[b2 ≤ b1]



First-Price Auction: Two Bidders
• Theorem.  Assume two bidders with their values drawn i.i.d. from uniform 

distribution on , then the strategy  is a symmetric Bayes Nash 

equilibrium of the sealed-bid first price auction. 

• Proof.  Assume agent  bids using , that is,  

• We calculate agent 's expected utility who has value  and bid  

•  

            

            

[0,1] s(vi) = vi/2

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ Pr[1 wins with bid b1]
= (v1 − b1) ⋅ Pr[b2 ≤ b1]
= (v1 − b1) ⋅ Pr[v2/2 ≤ b1]



First-Price Auction: Two Bidders
• Theorem.  Assume two bidders with their values drawn i.i.d. from uniform 

distribution on , then the strategy  is a symmetric Bayes Nash 

equilibrium of the sealed-bid first price auction. 

• Proof.  Assume agent  bids using , that is,  

• We calculate agent 's expected utility who has value  and bid  

•  

            

            

            

[0,1] s(vi) = vi/2

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ Pr[1 wins with bid b1]
= (v1 − b1) ⋅ Pr[b2 ≤ b1]
= (v1 − b1) ⋅ Pr[v2/2 ≤ b1]
= (v1 − b1) ⋅ Pr[v2 ≤ 2b1]

Here  are fixed 

and  is a random variable

v1, b1

v2



First-Price Auction: Two Bidders
• Theorem.  Assume two bidders with their values drawn i.i.d. from uniform 

distribution on , then the strategy  is a symmetric Bayes Nash 

equilibrium of the sealed-bid first price auction. 

• Proof.  Assume agent  bids using , that is,  

• We calculate agent 's expected utility who has value  and bid  

•  

            

            

            

[0,1] s(vi) = vi/2

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ Pr[1 wins with bid b1]
= (v1 − b1) ⋅ Pr[b2 ≤ b1]
= (v1 − b1) ⋅ Pr[v2/2 ≤ b1]
= (v1 − b1) ⋅ Pr[v2 ≤ 2b1]

= (v1 − b1) ⋅ F(2b1) = (v1 − b1) ⋅ 2b1



First-Price Auction: Two Bidders
• Proof (Cont).   Assume agent  bids using , that is,  

• Agent 's expected utility who has value  and bid  when she wins 

•  

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ 2b1 = 2v1b1 − 2b2
1



First-Price Auction: Two Bidders
• Proof (Cont).   Assume agent  bids using , that is,  

• Agent 's expected utility who has value  and bid  when she wins 

•   

• Agent  with value  should set  to maximize  as a function of   

• Differentiate and set derivate to zero (also check second order condition)

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ 2b1 = 2v1b1 − 2b2
1

1 v1 b1 2v1b1 − 2b2
1 b1



First-Price Auction: Two Bidders
• Proof (Cont).   Assume agent  bids using , that is,  

• Agent 's expected utility who has value  and bid  when she wins 

•   

• Agent  with value  should set  to maximize  as a function of   

• Differentiate and set derivate to zero (also check second order condition) 

• , that is, 

2 s( . ) b2 = v2/2

1 v1 b1

E[u1] = (v1 − b1) ⋅ 2b1 = 2v1b1 − 2b2
1

1 v1 b1 2v1b1 − 2b2
1 b1

E′ [u1] = 2v1 − 4b1 = 0 b1 = v1/2

The analysis is symmetric 

for agent  as well.2



First-Price Auction:  Biddersn
• Let us use the same approach to figure out the symmetric Bayes Nash 

equilibrium for  bidders 

• Suppose every bidder  uses strategy  

• Class exercise.   Can you write the expression for expected utility of bidder  
and figure out what value of  maximizes it? 

• Fix , write  as a function of them 

• Each  for  is a random variable i.i.d. in uniform  

• Deduce the value of  from this 

n

j ≠ 1 sj = α(n) ⋅ vj

1
b1

b1, v1 𝔼(u1)

vj j ≠ 1 [0, 1]

α(n)



First-Price Auction:  Biddersn
• Suppose we increase the number of bidders, how should 

the equilibrium strategy adjust to more competition? 

• Theorem.  Assume each of the  bidders have values 
drawn i.i.d. from uniform distribution on . Then, the 

strategy  is a symmetric Bayes Nash 

equilibrium of the sealed-bid first price auction. 

• Proof.  We can generalize the 2-bidder proof 

• On board. Also in Parkes and Seuven book. 

• Takeaway:  the more the competition, the more the 
bidders need to bid closer to their value if they want to win

n
[0,1]

s(vi) =
n − 1

n
⋅ vi



Empirical Bids vs Equilibrium
Truthful bids 

 3-person equilibrium

 2-person equilibrium



First-Price Auction: Guarantees 
• Turns out this Bayes Nash equilibrium is unique  

• Generalizes to arbitrary i.i.d distributions 

• Is linear time 

• Does it maximize surplus? 

• Bids in Bayes Nash equilibrium are order-preserving: that is, 
for values , the equilibrium bids are 

 

• The item is allocated to the highest bidder, thus to the agent 
with the maximum valuation 

• Maximizes surplus (at equilibrium) 

• Now, we want to compare the revenue of FP and SP auction

v1 ≥ v2 ≥ … ≥ vn
b1 ≥ b2 ≥ … ≥ bn



Order Statistics
• To do so, we need to define order statistics  
• Let  be  independent samples drawn 

identically from the uniform distribution on  

• The first-order statistic  is the maximum value of the 
samples, the second-order statistic is the second-
maximum value of the samples, etc 

• The expected value of the th order statistic for  i.i.d 
samples from  is    
 

             

• Remember:  a uniform random variable evenly divides 
the interval it is over

X1, X2, …Xn n
[0,1]

X(1)
X(2)

k n
U(a, b)

E[X(k)] = a +
n − (k − 1)

n + 1
⋅ (b − a)

Expected th order statistic for 3 samples, uniform k [0,1]



Revenue
• Theorem.  If bidder’s values are uniform i.i.d., then the expected revenue of the 

first-price auction is equal to that of the second-price auction at equilibrium. 

• Proof.  Let  and  be the expected revenues of the first and second-
price auction. 

• In second-price auction, the bidder with the highest value wins and pays 
second-highest value  

•  

            

• In FP auction, bidders bid  and highest bidder pays their bid

E[R1] E[R2]

E[R2] = expected value of second-order statistic

=
n − 1
n + 1

s(vi) =
n − 1

n
⋅ vi



Revenue
• Theorem.  If bidder’s values are uniform i.i.d., then the expected revenue of the 

first-price auction is equal to that of the second-price auction at equilibrium. 

• Proof.  Let  and  be the expected revenues of the first and second-
price auction. 

• In FP auction, bidders bid  and highest bidder pays their bid 

•

E[R1] E[R2]

s(vi) =
n − 1

n
⋅ vi

E[R1] = E[bmax] = E [ n − 1
n

⋅ vmax]



Revenue
• Theorem.  If bidder’s values are uniform i.i.d., then the expected revenue of the 

first-price auction is equal to that of the second-price auction at equilibrium. 

• Proof.  Let  and  be the expected revenues of the first and second-
price auction. 

• In FP auction, bidders bid  and highest bidder pays their bid 

•  

• The last step uses linearity of expectation 

•  where  and  are constants

E[R1] E[R2]

s(vi) =
n − 1

n
⋅ vi

E[R1] = E[bmax] = E [ n − 1
n

⋅ vmax] =
n − 1

n
E[vmax]

E(a ⋅ X + b ⋅ Y) = a ⋅ E(X) + b ⋅ E(Y) a b

=
n − 1

n
⋅

n
n + 1

=
n − 1
n + 1

∎



Myerson’s Lemma:  DSE vs BNE 
• Remember all DSE are BNE but not vice versa 

• When characterizing DSE, the game was deterministic and so we can talk about the 
actual allocation and payment 

• When characterizing BNE:  and  refer to the probability of allocation and 
the expected payments 

• Because a game played by agents with values drawn from a distribution will 
inherently, from agent ’s perspective have a randomized outcome and payment  

• Myerson's lemma also characterizes BNE in single-parameter mechanisms  

• If two auctions have the same distribution of agent values and same way of 
allocation (at BNE), then Myerson’s lemma tells us something amazing about them

xi(vi) pi(vi)

i



Myerson’s Lemma for BNE 
• Informal statement:      
• A strategy profile  is a Bayes’ Nash equilibrium in  if and only if for all  
 (a)  (monotonicity) the allocation probability  is monotone non decreasing 

(b)  (payment identity) agent ’s expected payment is given by:   
       

         

 
 
Assuming that . 

Proof is analogous to the DSE case.

s (x, p) i
xi(vi)

i

pi(vi) = vi ⋅ xi(vi) − ∫
vi

0
xi(z) dz

pi(0) = 0

Credit: Hartline’s Book on Mechanism Design

http://jasonhartline.com/MDnA/MDnA-ch2.pdf


Revenue Equivalence
• Most significant observation in auction theory 
• A mechanism with the same allocation in DSE (BNE) have 

the same (expected) revenue! 
• In fact, each agent has the same expected payment in 

each mechanism 
• Direct corollary of Myerson’s lemma 

• The interim expected payments depend only on the 
allocation probability! 

• Corollary (Revenue equivalence).   
• For any two mechanisms in 0-1 single-parameter 

setting, if the mechanism have the same BNE 
allocation, then they have the same expected revenue 
(assuming -valued agents pay nothing)0

If we want to increase the (expected) 
revenue, changing payments or 

charging more won’t do it!  You 
need to change how you allocate!



More Next Time!


