
CS 357: Algorithmic Game Theory Spring 2022

Assignment 4 (due 03/03/2022)

Instructor: Shikha Singh Solution Template

Instructions. This is a partner assignment: up to 2 students can work together and submit
a joint submission and receive the same grade. To receive the starter-code repository, fill out
the following https://tinyurl.com/357partner. The total points of this assignment is 35.

You are allowed to help each other with any Python-related questions, as long as it is not
directly related to the assignment code. Similarly, you are allowed to look for python-specific
resources online, e.g. on stackexchange, pydocs, and realpython.

There are two components of the assignment—written answers and the associated
code. You must submit the code through Github and PDF of LATEX answers via Gradescope.

This assignment will be graded on correctness, clarity, presentation of results, and the
quality of the interpretations made. Maintain good documentation of your simulation pa-
rameters and results. Incorporate them in your write up in a structured way using tables.

All assignments are due at 11 pm EST on the day of the deadline.

First-Price Keyword Auctions (6 pts)

Read one of the earliest foundational study by Edelman and Ostrovsky: “Strategic bidder
behavior in sponsored search auctions” [2], and answer the following questions briefly (around
2-3 sentences are fine; the goal is for you to read one of the classic papers in the history of
sponsored search before we start our own empirical analysis):

Problem 1. (a) How do auto-bidders exacerbate the unstable bidding behavior in first-
price keyword auctions? How does it affect the social welfare and revenue?

(b) How do the authors estimate (a) the valuations of bidders, and, (b) the stability of a
keyword auction market based on past data.

(c) What conclusions do they draw from their study? What are, in your opinion, some of
the shortcomings of their analysis?

GSP with Balanced Bidding vs VCG1

In the rest of the assignment, you will implement the balanced bidding agent for a generalized-
second-price (GSP) auction and the VCG mechanism. You will also analyze the effect of
strategic bidding and reserve prices on the revenue.

1Acknowledgement. This ad auction simulator is adapted from David Parkes and Sven Seuken.

1

https://www.overleaf.com/read/grkdrjrspnhh
https://tinyurl.com/357partner
https://docs.python.org/3/
https://realpython.com/
https://glow.williams.edu/courses/3378903/files/folder/papers?preview=229782853
https://glow.williams.edu/courses/3378903/files/folder/papers?preview=229782853
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Ad Auction Simulator You are given an ad auction simulator. The details of the simu-
lation are given below:

• Rounds. The auction will proceed over rounds t, where t goes from from 0, 1, . . . , 47. Each
round simulates 30 minutes, so overall we are modeling bidding over one full day.

• Value distribution. Value-per-click vi of the agents are uniformly distributed between
$0.25 and $1.75. If the agents are symmetric (following the same strategy), then it does
not matter how these values are assigned to them. However, if the agents are playing
different strategies, we need to randomly shuffle the valuations for different iterations of
the simulation. This is handled by the --perms argument (see the testing section.)

• Click-through-rates. Let αt
i denote the click-through-rate received by the ith slot in round

t. The click-through-rate of the first (top) slot in each round, αt
1, follows a cosine shape:

αt
1 = round(30cos(πt/24) + 50), where t = 0, 1, . . . , 47

where round denotes rounding to the nearest integer value. This means that during the
48 rounds (thus a 24 hour day), the clicks that the top slot receive start at 80 in the first
round, go down to 20 in round 24, and rises again to 80 in round 48, averaging 50 clicks
through the day. The click through rates of other slots αt

i for t = 2, . . . , k is given by:

αt
i = 0.75i−1αt

1

This click-through-rate function is modeled to fit clicks observed in real-world data.

• Bidding. In the first round, your bid is queried through the initalBid() function. For
all rounds after that, the bids are placed by calling the bid() function.

• Reserve price. If a non-zero reserve price is set then bids that are less than the reserve
are ignored. In the GSP auction, the agent that gets the lowest of the allocated slot (note
that there may be some unallocated slots) pays the maximum of the reserve price r and
the bid of the next-lower agent in bid-sorted order. If all bidders bid below the reserve
price r, then no slot is allocated.

• Number of slots. The number of available slots in any round is set to one less than the
number of active bidders in that round (unless there is only one active bidder). An active
bidder is a bidder with a bid that is greater than or equal to the reserve price.

• Payment and utility of agents. In each round t, the total payment for slot j is cjpj, where
cj is the number of clicks received by slot j in that round and pj is the per-click-payment
of that slot determined by the auction being used. In the GSP auction, the price-per-click
pj = bj+1 is the bid of the agent allocated to the next-lower slot. In the VCG mechanism,
this price is determined by the payment rule. The utility of an agent i occupying slot j is
calculated as ui = cj(vi − pj), where pj is the price-per-click of slot j.

• Simulating one round. In each round, the simulation collects bids, assigns slots, calculates
the number of clicks and payments, and determines the utilities of the bidders.
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• Budget B. Each bidding agent is given a total budget B = $1750 for the entire day (48
rounds). As long an agent has a positive budget, they are allowed to keep placing bids in
the next round. 2 The simulation handles this part—if the sum of the payments from all
previous rounds is greater than the agent’s budget, then it reduces all bids to $0.

Python3. Make sure you have Python 3.7 or above installed on your machine.

Starter code. You have been given the following python files as your stater code: auction.py,
bbagent.py, gsp.py, history.py, stats.py, truthful.py, util.py, vcg.py. Among
these, you will only be editing bbagent.py and vcg.py. But it is a good idea to familiaze
yourself with the code in truthful.py and gsp.py.

Testing. The following command lists command-line arguments that will help in testing.

python3 auction.py --h

You will use the following most frequently.

• Max permutations --perms=P: When analyzing symmetric agents (all agents using the
same strategy), you should set P=1. For asymmetric agent populations, it is important to
make sure that the value distribution is permuted among them during multiple runs of the
simulation. Note that there are n! ways of assigning these values to the n agents. If n! is
less than P, simulations will be run for each of these permutations, if n! is greater than P,
then P permutations will be randomly chosen.

• Number of iterations --iters=I: This runs the simulation I times. While debugging,
set this to one, but when aggregating and analyzing data, you want this to be high to get
good results (run it at least 50 or more times if the code is not too slow.)

• Seed --seed=S: When you are debugging and you want different iterations to have the
same repeatable value distribution (and tie breaking), you can use this argument and set
S to an integer.

• Reserve price --reserve=R: By default this is zero, but when doing tests with non-zero
reserve prices, you can use this argument.

• Mechanism --mech=M: By default, set to gsp, but can be changed to vcg, or switch.

Initial test. The following command runs the simulation with five truthful agents for two
rounds. The --perms=1 argument forces the simulator to assign a single permutation of
value-per-click to the agents.

python3 auction.py --loglevel=debug --numRound=2 --perms=1 Truthful,5

The --loglevel=debug option gives you round-by-round logs of each bidders bids, slots they
received, the number of clicks, payments, etc. Finally, the average stats are listed at the end.
If you would like to improve the logging and stats generated, you may do so.3

2You can, however, overspend your budget in at most one round and end up with a small deficit.
3Let me know if you improve any features in the code, as they will help future iterations of the course.
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Note on number of agents. I recommend using a total of five agents for all the tests.

Coding Tasks and Questions

Problem 2. (6 pts) (Implementing the Balanced Bidding Agent) In the file bbagent.py
implement a bidding agent that uses the balanced-bidding strategy. This strategy was stud-
ied in detail in the following paper: Greedy Bidding Strategies for Keyword Auctions[1].

Assume that each agent knows the bids made by all other agents in the previous round.
Assuming all other agents do not change their bid, a greedy balanced-bidding agent targets a
slot j that maximizes its utility. There may be a range of bids that would achieve the target
slot j. Recall from lecture that a balanced-bidding strategy, picks the highest bid b from
the range that makes the agent indifferent between getting the current slot at the current
price and the slot above at price b. The idea is that you want to drive up the price of the
competitor occupying the slot above you without fear of retaliation.

In particular, implement a balanced-bidding agent for player i, whose bidding strategy is
defined as follows. Fix b−i of all other agents.

• find a target slot j that maximizes utility αj(vi − pj)

• choose a bid bi for the next round so that it satisfies the following:

αj(vi − pj) = αj−1(vi − bi)

For j = 0 (the top slot), set α−1 = 2α0 just to make the above equation well defined.

In the above calculation, you should use the last round’s click through rate, rather than
the “future” click through rate, because agents only have access to the historical data.

The file bbagent.py contains a skeleton of the code. You must complete the functions:

• expectedUtils(): this function computes the expected utility of the bidder from targeting
each slot and returns a vector of utilities
• targetSlot(): this function calls expectedUtils and uses it to compute the target slot

that gives the bidding agent the maximum utility
• bid(): this function computes the equilibrium bid bi using the balanced bidding technique.

You will find the slotInfo() function useful which has already been implemented for you.
You may want to look at gsp.py to understand the implementation of the GSP auction,
especially the bidRangeForSlot() function.

Problem 3. (6 pts) (Analyzing GSP Bidding Strategies) We will test the balanced
bidding agent, and compare it to the truthful agent. To answer the following questions, run
the simulation with 5 agents with number of iterations set to 50 or more using the --iters

argument. Use the --seed argument to generate repeatable distributions. For symmetric
agents (parts (a) and (b)) use --perms=1.

(a) What is the average utility of a population of only truthful agents?

https://dl.acm.org/doi/pdf/10.1145/1250910.1250949
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(b) What is the average utility of a population of only balanced-bidding agents? Compare
with part (a) and explain the differences you see.

(c) (Asymmetric population) Compare the average utility of one truthful agent when it is
in a population of BB agents and one BB agent when it is in a population of truthful
agents. An example test-run looks like:

python3 auction.py --perms=10 --seed=3 --iters=30 Truthful,1 BBAgent,4

What do you observe? Interpret and explain your findings.

For each case, present your findings in a table along with the test parameters used.

Problem 4. (5 pts) (Implementing the VCG mechanism) Complete the implementation
of the VCG mechanism in vcg.py by implementing its payment rule.

The allocation rule has already been implemented for you. Notice that the allocation rule
ignores all bids below the reserve price.

When implementing the payment rule, take the reserve price into account. Suppose
k is the last allocated slot, then the last allocated bidder pays the maximum of the next-lower
bid bk+1 or the reserve price. This payment affects the payment of the other bidders, which
is easiest to see using the recursive definition of the VCG payment rule:

pi = bi+1(αi − αi+1) + pi+1

Problem 5. (6 pts) (Switching from GSP to VCG) In this question, we will explore what
happens if Google were to switch from using GSP to VCG and its effect on the short-term
revenue. For the following tests use 5 agents and --perms=1, and other suitable arguments
would be --seed and --iters=50 or above.4

(a) What is the revenue of the GSP auction in a population of all balanced-bidding agents?

(b) What is the revenue of the VCG auction in a population of all truthful agents? Explain
your findings about GSP vs VCG revenue in the context of the theoretical results
discussed in lecture.

(c) What happens if we switch midway from GSP to VCG when all agents are using the
balanced-bidding strategy? Run the GSP auction in a population of balanced bidding
agents, and midway (at round 24) switch to VCG.

You can do this by using the --mech=switch argument. How does switching affect the
revenue compared to (a) and (b)? Present your results in a tabular format and provide
the test parameters used.

Problem 6. (6 pts) (Analyzing affect of Reserve Prices on GSP and VCG) Reserve
prices are widely used as a mechanism to improve revenue in auctions. In a single-item
auction, a reserve price r is r at which auctioneer is willing to an item. Setting a reserve
price of course means that the item may sometimes not get sold.

4Keep the reserve price set to zero in Problem 4.
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This idea generalizes to sponsored-search auctions, in which if an agent’s bid-per-click is
below the reserve price r then their bid is ignored. In GSP, the agent that gets the lowest
of the allocated slot (note that there may be some unallocated slots) pays the maximum of
the reserve price r and the bid of the next-lower agent in bid-sorted order.

Reserve prices can be used to increase the sellers revenue. However, we must be careful
on how we select it as setting it too high may actually decrease the revenue. In this question,
we will investigate the sweet spot, the optimal reserve price setting for both the GSP auction.

For the following tests you may use the --reserve=R argument to set the reserve price
of the simulations. Also use --perms=1 and --iters=50 or above.

(a) Investigate the effect of increasing the reserve price on the revenue of the GSP auction
when all agents are using the balanced-bidding strategy. Start by setting the reserve
price to zero, and then increase it in small increments. Observe how the revenue
changes. What is the revenue-optimal reserve price?

(b) Investigate the effect of increasing the reserve price on the revenue of the VCG auction
when all agents are using the truthful strategy. Start by setting the reserve price to
zero, and then increase it in small increments. Observe how the revenue changes. What
is the revenue-optimal reserve price?

(c) How do the reserve prices in (a) and (b) compare to each other?

Tabulate your results and state your test parameters along with your interpretations.

Extra Credit (Up to 5 pts)

Problem 7. (Class competition) So far in the assignment, we have not taken the budget
into account in determining the bidding strategy. As (a hopefully fun) extra-credit exercise,
design a balanced-bidding agent that optimizes the use of its budget.

Your agent will compete in a GSP slot auction with agents submitted by other groups.
The auction will have a small reserve price (e.g. 10 cents).

To do well against a variety of strategies, your agent might want to take the competitor’s
strategy into account. For example, if others spend their budget early, you may want to
wait to bid more in later rounds when there is less competition, etc. All the agents in the
competition will be ranked based on their average utility per round over all iterations.

Points will be awarded as follows: if t teams participate, then the winning team (ranked
first) gets f = min{t, 5} points, the second gets f − 1 points and so on. 5

For this part, you must come up with a team name. Say your team name is ephs, then
create a new file ephsbudget.py in your repository and implement your bidding agent in it.
Don’t forget to add, commit and push the file to the repository.

In the write up, you must explain your bidding agent: the choices you made in designing
it and how you expect it to perform against other budget-optimized bidding agents.

Note. Do not modify the simulation itself for the purpose of the assignment. If you find
any bugs in the code, let me know. If you would like improve the logging or stats features,
etc., go for it and pass it along so the assignment can be improved for the future.

5So if you intend to participate, you should convince at least four other teams to participate as well!
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