Preface

TH1s coursk takes you on a deep dive through programming language
theory and implementation. To an outsider, the phrase “programming
language theory” rouses thoughts of dry, technical debates carried out
in quasi-mathematical notation. Indeed, most students who take this
course take it because they have to. Maybe that’s why you're here.

Regardless, I hope that for just one semester you can suspend judge-
ment about this discipline. Why? For starters, I think that language
designers are privileged to explore one of the most important questions
in computer science: how do you best ask a computer to do what you
want? Our aim is nothing less than to elevate humanity by improv-
ing access to computing. There are so many unexplored ways we might
communicate with a computer that I personally find little else more ex-
citing. To get the most out of this class, briefly permit yourself to imag-
ine life as a professional language designer.

If you've taken CSCI 237, you have firsthand experience writing pro-
grams in a computer’s “natural language.” Itis fiendishly difficult. Even
when armed with powerful Al tools, writing good machine language
programs remains frustrating.! Consequently, few programmers use
or even know any machine language. Instead, most of us communicate
with a computer using a programming language.

Unlike a natural language, which comes about via processes that we
only vaguely understand, a programming language is intentionally de-
signed to serve a purpose. Although every widely-used language con-
tains at least a few bad design choices, by and large, that purpose is to
act as a force multiplier. Steve Jobs liked to call the computer a “bicycle
for the mind” (Fig. 1). Computers do for mental effort what bicycles
do for physical effort. > The analogy is a good one, but it’s not entirely
correct. Without a programming language, programming a computer
is exhausting and slow. A good programming language makes many
kinds of computation easy, even delightful. A good one can make you
excited to program. Some can even change the way you think. A better
analogy is that a programming language is a bicycle for the mind.

An important motivation for this course—and why it is a core re-

SCIENTIFIC
AMERICAN

BICYCLE TECHNOLOGY ONEDOLLAR

llareh 1973

Figure 1: Jobs analogy was inspired by

a Scientific American article showing
that a bicycle is the most efficient known
mode of transportation, at 0.15 calories
per gram per kilometer. A cyclist
expends roughly 5x less energy than a
person who walks the same distance. It
is a large force multiplier.

T have struggled to goad ChatGPT
into producing functioning machine
language programs of any real-world
complexity. That a computer program
has trouble writing programs in its own
native language is deliciously ironic.

2S.S. Wilson. Bicycle technology.
Scientific American, 228(3):81-91, March
1973

quirement at Williams—is the recognition that the landscape of pro-
gramming is constantly changing. I am frequently asked why we don't
teach some programming technology x. Most recently, students have
asked “Why not Torch?” In the recent past, it was “Why not React” or
“Why not Rust?” Further back it was “Why not TypeScript” or “Why
not Scala?” At the risk of sounding like an old person, when I was in
school I was upset that we were spending time learning C++ when I
just really wanted to know Ruby on Rails. If you want to learn a tech-
nology, you should certainly take the time to learn it. Nevertheless, our
time in class is better spent on the most impactful ideas common to all
technologies, because any given z is likely to change again by the time
you graduate.

One of the most important foundations in this course is the “language
of languages” spoken by the small group of computer scientists who
design and implement programming languages. Fluency in this lan-
guage enables you to look at any given programming language and un-
derstand what it really does beyond the marketing fluff. Moreover, in
this course, you will experience firsthand what it takes to design and
implement a programming language from scratch. Finally, you will
gain experience programming F#, a language that I consider not just
well-designed, but beautiful. With these skills you will have no trouble
quickly learning new technologies on your own.

For now, I ask that you keep an open mind. This class will expose
you to new ways of thinking about computation. You may feel as if
you are unlearning lessons that you worked hard to learn in the first
place. The experience will be uncomfortable at times. If, at the end of
the semester, the new ways don't appeal to you, you are welcome to go
back to your comfort zone. It’s your life and the computer doesn’t care
how you program it! But if you stick with it, I promise you that you will
become a better programmer.

Lastly, a note: in CSCI 134 and CSCI 136 you were taught how to write
programs using data structures. This course expects that you know how
to do those things. If you do not feel prepared, that’s ok, but please make
a point in coming to speak with me early in the semester. This course
also expects that you know what files are and how to manage them on
the command line. Many students just feel a little rusty on these ideas,
and if that’s the case, there’s no need to see me. Just start with the short
tutorial in Appendix A: Refresher on Files and the Shell.

What is a Programming Language?

Key ideas:
e Mathematical view of languages.

e Primitives and combining forms.

A programming language is a scheme for communicating with a com-
puter. It is a language because it typically requires you to use words
in a specific order. Because we care about achieving specific effects on
a computer (Fig. 2), the meaning of those words in their particular or-
der tends be to strongly related to changes in the state of the underly-
ing computer. We call the set of words and their order the syntax of
a language. The meanings of the words in a programming language
are called its semantics. A “sentence” in a programming language is a
program. The study of programming languages generally aims to un-
derstand the relationship between the kinds of programs one can write
in a given language and whether the manner in which we ask program-
mers to write them helps or hinders from achieving one’s programming
goals. We will study both the syntax and the semantics of programming
languages in this class.

Depending on your programming experience, you may have only
used one or two programming languages, like Python or Java. In fact,
there are thousands of programming languages. Although Python and
Java look different, the meaning of Python and Java programs are sim-
ilar. In other words, although Python and Java have different syntax,
their semantics are closely related. This is why the CS department is
confident that you can learn to program a computer in Python and then
switch to learning data structures in Java. It really is just a matter of
learning how to write what you already know in a different style. In
this class, we will examine languages with different syntax and differ-
ent semantics than you have seen before.

Importantly, a programming language defines what ideas you are
capable of “discussing” with a computer. One of the most surprising
facts I remember learning when I was new to computer science is that,
natively, computers can only “discuss” numbers. They have no concept
of characters, no concept of strings, or of images, or audio, or video,

Figure 2: For example, printing a charac-
ter to the screen.

10

or any of the other kinds of data we might want to use in a program.
Only through abstraction are we able to use those ideas in programs.
For example, we can print a letter to the screen by telling the computer
to interpret certain numbers as certain characters. 3 The fact that a com-
puter, which can only technically operate over the domain of numbers,
can universally compute using these other kinds of data is profound.
Still, programming a computer to handle images or audio or video with-
out being able to “talk” about images or audio or video is a real burden
on the programmer. Programming languages are where the magic of
abstraction happens.

Primitives and Combining Forms

Although there are many programming languages, and they can differ
wildly in syntax and semantics, that does not mean that they do not
still have some similarities. In fact, most programming languages are
organized and constructed using standard techniques. We will discuss
these standard techniques at length. If this all sounds very vague to
you, a good analogy is that of architecture. For example, two buildings
may have very different appearances and functions. A typical subur-
ban house and an aircraft hangar don’t look at all alike and they serve
different purposes (Figure 3). Nevertheless, an architect will point out
that they both feature foundations, walls, and roofs. In the same way,
differing programming language designs can be constructed from the
same components.

The simplest kind of component is called a primitive. What, precisely,
constitutes a primitive depends on the needs of the language designer.
But a common way to decide whether some idea in a programming lan-
guage should be primitive is to ask whether the idea is itself made of
parts. For example, in Java, an int does not have parts. It is, in some
sense, indivisible. Although you may know that an int is stored on a
computer in binary, and a binary number really does have parts, Java
hides those facts from you. In Java an int is primitive. Primitives are
also usually used as data, although this is not always the case.

By contrast, a class in Java has parts. Classes have fields (variables)
and methods (functions). A class is not a primitive. Instead, a class is
an example of a combining form, another kind of language component.
Combining forms combine ideas in a language into new ideas. One in-
teresting thing about Java’s classes is that you can use them to combine
not just primitives, but also other classes. For example,

class Point {
int x;
int y;

}

% One simple scheme for encoding
characters as numbers is called ASCII;
you probably encountered ASCIT

in CSCI 136. The modern, de-facto
encoding is called utf-8.

Figure 3: A house and an aircraft
hangar. Different, but also sort of the
same.

is a simple Java class that defines a Point using primitive values. But
we can also use classes to combine classes, as in the following definition.

class Line {
Point start;
Point end;

}

The above examples combine data for organizational purposes, but we
can also combine for the purpose of calculation. For example, the +
operator in Java combines two pieces of data and calculates their sum.

1+ 2;

Primitives and combining forms are the two most basic forms of lan-
guages components. Most other language features are usually a kind
of primitive or a kind of combining form. Go back to a program you've
written before and have a look at it. Which parts are likely primitives
and which are likely combining forms? While you're at it, here’s some-
thing to ponder: is a function definition in a programming language
a primitive, a combining form, or something else? Pick your favorite
programming language and see if you can figure it out.

An Introduction to F#

This tutorial gets you started learning the F# programming language. F#
is a modern version of the highly influential ML programming language.
We focus at first on the F# programming environment and basic syntax.
In the next reading, we will dive deeper into some important features.

F# will force you think about programming in new ways. However, even
if you never program in F# again, the experience will likely influence your
programming for the better. After I discovered F#, I wondered why con-
ventional languages like Java and C++ had to be so complicated. The
short answer is: they don’t have to be!

The readings in this course packet are intended to be read with your pro-
gramming environment running so that you can try things yourself. You
can either use one of the lab machines, which have F# preinstalled, or
you can install F# on your own computer.4 Many of the course’s weekly
quizzes assume that you are actively typing in and running code from the
book, so if you want to best prepare for them, do that!

*Type dotnet fsi on the command
line to start the F# interpreter. To quit,
type #quit; ;. You will sometimes hear
me refer to the interpreter as a “REPL,”
which stands for “read-eval-print loop.”

Key ideas:

e Foundational concepts in functional programming.
e Using dotnet to create a project.

e Compiling and running a project.

LET’s Look AT our favorite starter program written in F#.

printfn "Hello world!\n"

That is the entire program.’

What is F#?

F# is a functional programming language. A functional programming
language differs in form from programming languages like C® or Java”.
Even if you decide that functional programming is not for you, exposure
to functional programming ideas will change the way you think about

® When typing programs into the REPL,
you must terminate them with ; ;.

For example, type printfn "Hello
world!\n";; When coding outside

of the REPL, you do not need to use

; ;- This may seem confusing at the
moment, but you'll get the hang of it.

¢ C is an imperative programming lan-
guage, meaning that programmers are
expected to spell out every step of a pro-
gram, including how values are stored
in memory.

7Java is an object-oriented programming
language. Object-oriented languages
frame memory management and com-
mon software designs in terms of
“objects,” and are also usually imper-
ative. Python and Java are imperative
and object-oriented.

14

coding for the better.

Functional programming encourages expressions over statements, im-
mutable instead of mutable variables, and pure functions instead of side-
effecting procedures. Functions are first-class. F# is also strongly typed
unlike C, which is weakly typed, and Python, which is dynamically typed.
A functional program reads more like mathematical statements than a
sequence of steps. You may not have heard some of these terms before,
so let’s take the time to understand each one.

Immutable variables

In a language like Python or C, a variable can be declared and written
to many times. E.g.,

x =2

x += 1 # the value of x is now 3
x += 1 # the value of x is now 4
x += 1 # the value of x is now 5

In a functional programming language, a variable can only be assigned
once, when it is defined.
let x = 2

x += 1 // can't do this in F#; will not compile

You might be wondering how on earth you “update” data. It's done like
this:

2

x + 1

let x

let y

where x and y are not the same variable. In other words, you cannot
update a variable!

Variables in F# are immutable, meaning that once they are defined,
their values will never change. This may seem like a strange “feature,”
since mutable variables are undoubtedly useful. Of the many features
of functional programming, this is considered by many to be one of the
most important. Immutable variables force programmers to think of the
result of every computation as a new piece of information, with a new
name, and this constraint often has a clarifying effect on program logic.
If this does not seem like a good idea yet, give it some time; its value
will become apparent with practice.

AN INTRODUCTION TO F#

Expressions

In a language like Python or C, a line of code can either return a value
or not. For example, in Python:

print("hi") # returns nothing; this is a statement

x +1 # returns the value 3; this is an expression

In a functional language, all language constructs are expressions.

let x = 2 // returns a binding of the value 2 to the variable 'x'

x + 1 // returns the value 3

When a line of code returns nothing, we call it a statement. Since it
is pointless to have a line of code that does nothing, a statement does
something by changing the state of the computer. Changing the state of the
computer independently of a return value is called a side effect. Side ef-
fects are either banned in functional languages (e.g., pure Lisp, Haskell,
Excel) or strongly discouraged (e.g., Standard ML, F#).

Pure, first-class functions

A pure function is a function that has no side effects. In F#, we usually
write pure functions.

In C, one can write the following;:

int i = 0;

void increment() {
i++;

}

increment(); // i has the value 1

Observe that the increment function takes no arguments and returns
no values and yet, it does something useful by altering® the variable i. 8 The technical term is mutating.
One is not permitted to write code like this in a functional programming
language because variables are immutable and functions are pure. In-
stead, one might write

let increment n = n + 1
let i = 0
let i' = increment i // i has the value 0; i' has the value 1

where i and i' are different variables, and where increment is a func-
tion definition for a function called increment that takes a single argu-

15

16

ment, n. Function calls look a little strange in F#, so you should expect
that will take some time before you are adept at recognizing their form.
It often helps to rewrite a program to use explicit parentheses and type
annotations:

let increment(n: int) : int = n + 1
let i: int = O

let i': int = increment (i)

This is also a valid F# program—in fact, it’s exactly the same program—
and if you find yourself struggling with syntax, [encourage you to write
in this style instead.

F# has different syntax for function definitions, but the general idea is
the same as in a language like Java. This function hasaname, increment.
It has a parameter called n of type int. It returns a value of type int.
It computes and returns n + 1. Observe that it has no return state-
ment. Because everything must be an expression, a function must re-
turn a value, so F# returns whatever the expression in the last line of
the function returns.

Function definitions in F# are also first class values. Among other
things, any first class value can be assigned to a variable. That lets us
do something that might surprise you: assign a function definition to a
variable.? For instance,

let increment(n: int) : int = n + 1
let addone = increment
addone(3) // returns 4

The type of the variable addone is a function definition (specifically,
a function that takes an int as input and returns an int, or as we say
for short “a function from int to int”), and since it’s a function we can
call it just as we would call increment.

Since values and variables can be passed into functions, one can pass
variables of “function type” into functions as well:

let increment(n: int) : int = n + 1
let doer_thinger(f: int -> int, n: int) : int = f(n)
doer_thinger(increment, 3) // returns 4

And, just for fun, let’s get rid of the unnecessary syntax so you can
see how simple this program can look:

let increment n = n + 1
let doer_thinger f n = f n

doer_thinger increment 3 // returns 4

 Most students struggle with this
concept, but it is very important. If
you're struggling to understand this
idea, this is a great topic of discussion
for class or help hours.

Strong types

Fi# is a strongly-typed programming language. A strongly-typed lan-
guage is one that enforces data types strictly and consistently. That
means that the following kinds of programs are not admissible in F#.
For example, the Python program,

x =1
x = "hi"

or the C program,

int x = -3;

unsigned y = x;

Even with all the warnings enabled, a C compiler (like clang), won't
flinch: no errors or warnings are printed for the above program. Nev-
ertheless, it doesn’t make sense to disregard the fact that an int is not
an unsigned int, because assigning -3 to y dramatically changes the
meaning of the value. y is very much not -3 anymore!?.

Both of the above programs would be considered incorrect in F#, since
both contain type errors. Neither program will compile. To convert from

an integer to an unsigned integer, we must explicitly convert them in F#:

let x: int = -3
let y: uint32 = uint32 x

Strong types help you avoid easy-to-make but costly mistakes.

Other features

F#has many other features, such as garbage collection (like Java), lambda
expressions, pattern matching, type inference, concurrency primitives,

alarge, mature standard library, object-orientation, inheritance, and many

other features. Don’t worry if you don’t know what these words mean
now. We will discuss their meanings throughout the remainder of the
semester.

Microsoft NET

F# is a part of an ecosystem of languages and tools developed by Mi-
crosoft called .NET (pronounced “dot net”). Programs written in .NET
are almost entirely interoperable, meaning that different parts of the
same program can be written in different languages. For instance, I
routinely write software that makes use of code written in C#, F#, and
Visual Basic combined into a single program.

AN INTRODUCTION TO F#

107f you know some C, try running a
little experiment to see what happens.

17

18

NET is also portable, meaning that it can run on many computer
platforms. Unless you specifically seek to write platform-specific code,
NET code can be run anywhere the .NET Common Language Runtime
(CLR) is available. This language architecture is similar to, and heav-
ily inspired by, the technology behind the Java Virtual Machine (JVM).
The .NET Core CLR is available on Windows, the macOS, and Linux.
Additional platforms (like Android, iOS, and FreeBSD) are supported
by the open source Mono project.

We will be using the .NET Core framework on Linux for this class. If
you would like to install .NET Core on your own machine, you may do
so by downloading the installer!!.

Modularity

One feature that we will address right away is F#'s strong support for
modularity. Modules are a way of organizing code so that similarly
named functions and variables in different parts of code do not conflict.
In C, libraries are imported by the C preprocessor which performs the
moral equivalent of pasting code from included libraries into a single
file. As aresult, it is easy to accidentally give two different function def-
initions the same name, a so-called name conflict. Name conflicts are an
annoying and commonplace occurence in C. In F# and other .NET lan-
guages, name conflicts are impossible, because names are scoped, mean-
ing that they only have meaning within certain boundaries. When a du-
plicate name appears, .NET signals that something is wrong by issuing
a compilation error.1?

F# has a variety of constructs available to scope names: solutions,
projects, namespaces, and modules. For now, we will focus on projects.

A project is a unit of organization defined by .NET. A project contains
a collection of source code files, all in the same language. A project is
either a library, meaning that it must be called by another project, or an
application, meaning that it has an entry point and can run by itself.

Creating a New F# Project

Let’s conclude this chapter by writing a “helloworld” program. It is con-
ventional in F# programming (and in the wider world of NET program-
ming) to package your code as an application project, and that’s what
we're going to do for all assignments in this class.

An application project is a development convention that collects all
of the files for one program into a single folder with some metadata.

"https://www.microsoft.com/net/
download

12 Compilation errors are a good thing.
When they occur, the compiler is telling
you that you definitely made a logic
error. Learn to be friends with compiler
errors.

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download

Whenever you want to write a new program to solve a new problem, you
should generate an application project. An application project makes
a program self-contained and simplifies the development process. Re-
member this procedure (or bookmark this page), because you are going
to have to repeat these steps many times this semester.

We create new F# projects using the dotnet command on the UNIX
command line. Because dotnet creates a project in the existing direc-
tory, you should first create a directory for your project.

$ mkdir helloworld

Now cd into the directory and create the project.
$ cd helloworld

$ dotnet new console -lang f#

By default, the above command will generate a Hello World program
called Program.fs.

// For more information see https://aka.ms/fsharp-console-apps

printfn "Hello from F#"

There is very little boilerplate text in the above program. Unfortu-
nately, newcomers are often confused by F#’s conciseness. Therefore,
throughout the course, we are going to always ensure that our F# pro-
grams contain at least a little boilerplate: a main function, marked as the
[<EntryPoint>]. Replace the text in Program.fs with the following:

open System

[<EntryPoint>]
let main argv =
printfn "Hello World from F#!"

0 // return an integer exit code

F# is a whitespace sensitive language, like Python. Whitespace sen-
sitivity means that the scope of a function definition is determined by
indentation rules instead of explicit delimeters like curly braces. When
using the REPL, we always have to use the delimiter ;; to let the pro-
gram know that we are done typing. Outside of the REPL, we do not
need to use them because F# can infer the end of a line or program using
indentation. Therefore, as in Python, you must be careful to always ap-
propriately indent your code or the language will misunderstand you.

The last line in the above main function is the expression 0. Because
the last line of a function definition denotes the function’s return value,

AN INTRODUCTION TO F# 19

yrviiciir a lJl. Uél alltlt o lllalilil TUulibuavitr
returns 0 it informs the operating
system that everything went OK. A
non-zero return value indicates a failure.

20

this function returns zero.13

Compiling and running your project
Compile your project with:
$ dotnet build

You may also just run the project, and if it needs to be built, dotnet
will build it for you before running it.

$ dotnet run

I personally prefer to run the build command separately because the
run command hides compiler output. Ilike to see compiler output since
it will inform me when it finds problems with my program. Unlike other
languages you may have used, F#'s compiler generally produces very
good error messages.

Code editors

You are welcome to use whatever code editor you wish in this class.
Two in particular stand out for F#, however: Visual Studio Code and
emacs. Both are installed on our lab machines. Note, however, that we
will strictly manage our projects using the dotnet command line tool.

Visual Studio Code

Visual Studio Code works out of the box with F#, but an extension called
Tonide'# adds additional features like syntax highlighting and tooltips Yhttp://ionide.io/
to your editor. To install Ionide, follow this tutorial on installing exten-

sions!. ®https://code.visualstudio.com/

Note: Ionide comes with a variety of build tools such as FAKE, Forge, docs/editor/extension-gallery
Paket, and project scaffolds. Please do not use these tools for this class
as they do not interoperate well with our class environment. Instead,
please use the dotnet command line tool to compile and run your tool

as discussed earler.

http://ionide.io/
http://ionide.io/
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery

AN INTRODUCTION TO F# 21

emacs

If you prefer emacs, you can add the fsharp-mode which adds syntax
highlighting, t9olt1ps, and a variety of other nice feat.ures. I personally 15 On your personal machine, use
prefer this environment, but I understand that emacs is not everybody’s ~/ . emacs instead.

cup of tea.

If using emacs on a lab machine, try pasting the following into

~/. 1ocal_emacs:16

(require 'package)
(add-to-list
'package-archives
'("melpa" . "http://melpa.org/packages/"))
(unless package-archive-contents (package-refresh-contents))

(package-initialize)

(unless (package-installed-p 'fsharp-mode)
(package-install 'fsharp-mode))
(require 'fsharp-mode)

The above will install both MELPA, which is an online package repos-
itory for emacs, and the fsharp-mode package. Note that MELPA has
many other modes you can install if you like what you see. One down-
side to MELPA is that it adds a few seconds of startup time to emacs,
but in my opinion, the delay is well worth the wait.

The next time you start emacs with F# code, you will see the new

mode in action.

More F#

This reading goes deeper into the F#language. As before, you are strongly
encouraged to follow along on your computer.

Key ideas:

e Entry points.

e Defining and using variables and functions with or without type an-
notations.

e Currying and partial application.

e Modules.

e Conditionals.

e Lambda expressions.

17 7 The term source code refers to the code

written by you, the programmer. In a
[<EntryPoint>] compiled language like F#, source code
is translated into machine code by the
compiler. A computer can only run a
printfn "Hello, %s!" argv[0] program in machine code form.

0

Let’s look at a simple F# program in source code form.

let main argv =

Hopefully it’s not a stretch to figure out what this program does. Nev-
ertheless, it contains some things that are likely unfamiliar, so let’s look
at it line-by-line to understand what its parts are.

Understanding the Code You Write

As a new CS student, you've probably used code that you don’t un-
derstand. Doing so is a bad habit. Whenever you borrow code from
somebody, you really should make the effort to understand it. Let’s un-
derstand the program above.

24

Entry Points

The first line,
[<EntryPoint>]

marks the function as the entry point to the program. The entry point
is the location in the program where computation begins. In Java, the
main function is always the entry point. F# gives you a bit more flexi-
bility: it can be any single function that takes a string[] and returns
an int, as long as that one function is labeled with the [<EntryPoint>]
annotation.

Function Definitions

The next line,
let main argv =

denotes the start of a function definition. F# is whitespace-sensitive, like
Python, and unlike Java or C. In F# code must be indented using spaces.
The body of the function definition begins at the = character and extends
until the end of the indented region below.

In F#, definitions of all kinds start with the keyword let. In general,
a let definition binds'® the result of the expression on the right of a = to
the name on the left of the =.

Observe that variables and functions are defined in much the same

way. The expression
let main argv = ...

defines a function called main with a single argument called argv, bound
to the expression on the right, and

let x = 1

defines a variable called x bound to the value 1. F# knows that the first
example is a function, not a variable, because the name on the left of the
= sign includes an argument (i.e., argv).

Note that, unlike most languages you've likely studied, F# functions

are pure, meaning that they must always return a value. While side-effecting

functions are possible in F# they are strongly discouraged, and you must
take extra steps to use them.?’ In this class, we will write pure functions
unless otherwise specified.

18 Not tabs. F# will reject programs that
use tabs for indentation.

19 The term “bind” is intended to convey
the idea that a definition “ties” a name
and a value together.

? Variables changed via side effect must
be marked mutable. A side-effecting
function is more properly referred to as
a procedure.

Static Types, Type Inference, and Type Errors

F# is a statically typed programming language. In such languages, ev-
ery datum in a program must belong to an unambiguous data typezl,
and any operation involving that datum must be valid for its data type.
Ensuring that a program adheres to these rules is known as typecheck-
ing. ?? Statically typed languages will refuse to compile programs that
fail a typecheck. In other words, type errors are detected at “compile
time.” Without static typechecking, such errors would remain unde-
tected until “runtime.”

More generally, programming languages can be placed on a spec-
trum based on the strength of their typechecking. At one end are lan-
guages with static types like F# and Java. In the middle are dynamically
typed languages like Python, JavaScript, and Ruby, that defer typecheck-
ing to runtime. Unlike static languages, dynamic languages can con-
tain type errors that cause program failures when they are executed. At
the opposite end of the spectrum are untyped languages like machine
language. In untyped languages, type checks are not performed at all.
Mixing data and operations inappropriately can lead to crashes or silent
data corruption.

In many programming languages, we supply the information needed
to carry out a typecheck using a type annotation. A type annotation is a
label that states a data type. For example, the following Java code labels
the variable x with the type annotation String.

String x = "hello";

Java requires that all data and functions have type annotations. Al-
though F# is statically typed like Java, it does not always require type
annotations. Have another look at our F# program.

[<EntryPoint>]

let main argv =
printfn "Hello, %s!" argv[0]
0

There are no type annotations in this program. In F#, type anno-
tations are optional. F# can usually deduce the type of an expression
without your help, a feature called type inference.

Since you're new to F#, you may look at the above program and think
“how am I supposed to know what the right types should be?” Admit-
tedly, it’s not obvious that the type for argv is string[]. A downside of
type inference is that although type information can be deduced from
program text, the type is not always evident. The upside is that, when
you get the type of an expression wrong, the F# compiler will tell you.

MORE F# 25

2l int, char, and string are common
examples of data types.

2 For instance, it typically does not
make sense to use the multiplication
operation on two strings.

26

You may recall from programming in Java that type errors are a little
scary the first time you see them. A type error is evidence that your pro-
gram is provably wrong. The right attitude to take is that your compiler
is doing you an important service. Such compiler messages are only
painful when you write a lot of code between typechecks. Develop the
habit of checking your program for type errors early and often. You'll
find that your typechecker is your friend.

Let’s work through a variation of our main program to practice read-
ing and understanding a type error. Suppose for a moment that my
main function was:

let main argv =

argv + 1
Then F# would report,
error FS0001: The type 'int' does not match the type 'string []'

and I would not be able to run the program. Do you see why I got this
type error?

Recall that an EntryPoint must be a function that takes a string[]
and returns an int. That means that argv must be a string[]. Be-
cause our program adds something to argv, the + operation must take
a string[] for its left operand. The literal value 1 has type int, so the
+ operation must take an int for its right operand. The result of the
expression must also be an int because return type of main is an int.
Therefore, to satisfy the typecheck, F# must be able to find an operation
called + that takes a string[] and a int and returns an int. Unfortu-
nately, there is no such operation, so F# reports a type error.

You can always add type annotations yourself. If you are at all unsure
what the types of various things are, I encourage you to write them. I
don't always add type annotations to my code, but when I want others

to read my code, I make a point of adding them.?? Let’s add types to ¥ Our department’s ColloquiumBot
program is written in F# and I have
gone to great lengths to provide type
annotations everywhere.

the main function in our running example.

let main(argv: string[]) : int =
printfn "Hello, %s!" argv[0]
0

The syntax of a typed function in F# is the following;:

let <function name> (<arg_1>: <type_1>) ... (<arg_n>: <type_n>) : <return type> =
<expression>

Ileave the decision to include or leave out type annotations up to you.

MORE F#

As long as your program compiles and runs, I do not care. I encourage
you to try out the type-free and parens-free syntax, because shorter pro-
grams are often easier to read. However, to a large extent, this is a matter
of personal taste.

Function Body
The meat of our main function consists of the following two lines:

printfn "Hello, Y%s!" argv[0]
0

Notice that this code is indented from main. The indentation is how we
know that the code is a part of the main function definition. My personal
convention is to use 4 spaces. Others use 2. Again, choose what you like,
but note that the F# compiler will not let you use tabs.

Function Calls

The first line of main calls the printfn function. Function calls in F#

work exactly the same way as “application” in the lambda calculus, which
we will discuss in detail in this class. The important thing to know for

now is that an expression of the form

ab

means that we are calling the function a with the argument b. As long
as a and b are defined somewhere, it is valid F# code. Here’s another
example with a and b defined.

let b =1
let ax=x +1
ab

This program returns the value 2. Try typing it into the dotnet fsi

REPL to see for yourself.?*

each line.
Function Types

A function in a functional programming language is data. In a statically
typed programming language, all data must be typed, so that begs the
question: what is the type of a function? For example, what is the type
of the following function?

let ax=x+1

27

% Don't forget to add ; ; delimiters after

28

Try typing the above expression into dotnet fsi. You should see
something like:

int -> int

The -> notation tells us that a value is a function. That value is bound
to the variable called a. Remember when I said that all definitions are
defined using let? Because the above let expression has additional
terms on the left hand side of the = sign, F# knows that you are defining
a function. In fact, our let expression is a shorthand for the following,

let a = fun x > x + 1

which may be a little clearer. We are defining a variable called a that is
bound to a function that takes an int and returns an int. Just keep in
mind: you can tell that a value is a function whenever you see a -> in its

type.

By the way, when we put the above function a into dotnet fsi, it
actually prints out the following type:

>let ax=x+1;;

val a : x:int -> int

Try not to be confused by the extra output. F# is trying to be helpful
by including names along with the types. The value (val) of the entire
expression is a name binding called a. Since the entire expression has
a —> in it, we know it’s a function. The stuff on the left side of -> is the
type of the function’s argument. Therefore, the type of the function’s
argument, x, is int. The stuff on the right side of -> is the type of the
function’s return value.

Polymorphic Functions

Polymorphic code is code that works for different types of data. You've

seen polymorphism before. Java generics are a kind of polymorphism.?

For example, we know that linked lists work equally well for integers
and strings, so Java lets us write:
List<Integer> x = new List<>();

for an integer, or

List<String> y = new List<>();

5 Strictly speaking, Java generics are
a Java-specific implementation of
parametric polymorphism.

for a string. Nevertheless, we only need to implement a single List im-
plementation because our List can be made generic.

In F#, polymorphic types are prefaced by the single quote character,
'. A function having polymorphic type can take any kind of data. For
example, let’s look at the identity function. The identity function just re-
turns whatever it is given. Since a procedure that “returns whatever it
is given” does not need to do anything different for values of different
types, we ought to be able to write a single implementation that works
for any type.

let id x = x

If we type this into dotnet fsi, F# tells us that the type is:

la -> Ia

Let’s try using id for values with different types. It works for num-
bers:

> id 5;;

val it : int = 5
It also works for strings:

> id "hi";;

val it : string = "hi"

Curried Definitions and Partial Application

I'm about to introduce something weird. Have a look at our hello world
program again.

let main argv =
printfn "Hello, %s!" argv[0]
0
If we rewrite main with types and parens around function calls, we get

let main(argv: string[]) : int =
printfn("Hello, %s!") (argv[0])
0

and this is exactly the same program. But have a look at our call to the
printfn function. Doesn’t that look a little strange? Why does the call
to printfn have two parenthesized arguments?

The short answer is that, in F#, function calls are curried. Let’s spend

MORE F# 29

30

a little time understanding what that means and why we have it.

F# is strongly patterned on a model of computation called the lambda
calculus. We will discuss the lambda calculus in detail later in this class.
For now, the important thing to know is that the lambda calculus has no
notion of functions that take multiple arguments. It doesn’t have them
because they are not necessary: any function that takes multiple argu-
ments can be constructed out of multiple, single-argument functions.

Here is a function in F# that we informally think of as being defined
over two arguments.

let fxy=xy

Thetypeforlet f x y = x ysayssomething alittle more subtle though.
(‘ta=> 'b) > 'a->"'b

Function types are a little hard to read at first, but once you understand
the rules, they’re informative. Let’s look at this type one part at a time.

We know that the function f takes two arguments and returns one
value, so we expect our type to say something like that. Indeed it does.
('a => 'b) -> 'a -> 'bhas three parts:

e 'a —> 'b, whichis “one part” because of the parens,
e 'a,and
e 'b.

According to the above type, our first variable x mustbe 'a -> 'b,a
function from any type 'a to any type 'b. The type 'a -> 'bis very
general and admits any single-argument function. For example, the
function let foo (i: int) = str i, which converts an integer i into
a string, will satisfy the type for x because 'a could be int and 'b could
be string.

Notice that F# did not say that the type of x was 'a -> 'a. That type
would be more restrictive than 'a -> 'b. The function let foo (i:
int) = str i would not satisfy the type 'a -> 'a, because the type
says that the input and the output of the function have to have the same
type. When we do not explicitly tell F# the type of an expression, it
will automatically deduce the type from the context, and the language
always tries to compute the least restrictive type. Since nothing about
the use of x implies that the types of the input and the output of x must
be the same type, F# uses introduces two different polymorphic types,
'aand 'b.

In an important sense, we can say that £ really only has two parts:

stuff -> other stuff

where stuff = 'a -> 'band other stuff = 'a -> 'b.2°
Since f is a function, we should be able to give it some stuff and get
other stuff back. We know that the type of the input stuff, x,is 'a ->
"b. We also know that x must itself be a function, because of its type.
Let’s try using f. Since its first argument is a function, let’s define a
function we’ll name g. We'll call £ with g and name the output h.

let fxy=xy
let gx=x+1
let h=fFfg

Is the function g acceptable to F#? Let’s work through this “on paper.”
The type of f's argument x is 'a -> 'b. What is the type of let g x =
x + 1? Try it in the REPL before continuing.

It’'s int -> int. Does this satisfy ('a -> 'b)? Yes, because when
we call f with g, the language determines that 'a = intand 'b = int.

Now what is the type of h? Again, we should be able to figure it
out “on paper.” h is what we get when we call the function £ with the
function g. According to our type for £, ('a => 'b) -> 'a -> 'b, we
should getan 'a -> 'bback, right? But we also know more! When we
gave the function £ the argument g, we constrained the types so that 'a
= int and 'b = int. Therefore, h must have the type int -> int.

So h is a function. Try typing the definition for h into dotnet fsi
to verify our reasoning. This already feels like a different way of pro-
gramming than in a language like C or Python, doesn’t it? As a matter
of fact, you can also reason through C and Python on paper, but with
varying degrees of difficulty. You can often figure out what a functional
program should do with a little pencil and paper work. Predictability
is an important aspect of programming, and making program outputs
easy to predict is an important design goal for functional programming
languages (see Figure 4).

Let’s keep going! If h is a function, then we can call it with an argu-
ment, right?

> h 3;;
val it : int = 4

Does this result make sense to you? If you have trouble working
through the program’s logic on paper, this is a good topic to discuss
in class or in office hours. Please ask!

What we’ve learned is that, in F#, when a function over multiple ar-
guments is given fewer arguments than it takes, it returns a function
that expects the remaining arguments. To be a little more precise, arity
is the count of the number of arguments a function takes. Any func-
tion with an arity greater than 1 can be defined by composing multi-

MORE F# 31

% If you are wondering why I split

the expression up this way, the short
answer is: trust me for now. The longer
answer is that function application in
the lambda calculus is left-associative.
We will get there in time.

Figure 4: To put this in perspective,
suppose you hire an engineer to build
you a bridge. Understandably, you
want to know that your money is well-
spent, so you ask them “is this bridge
safe?” Imagine how you would feel if
the engineer responded “I don’t know.
Let’s try it!” Just trying it is the norm in
programming, but it should not be.

32

ple single-argument functions, a technique called currying.?’ Calling a
multi-argument function with fewer arguments than its arity is called
partial application.

You may find it hard to imagine why currying and partial applica-
tion is useful. In the near future, we will discuss a style of functional
programming called combinator-style programming, and you will see that
these features can help you write more concise, more readable code than
the alternatives.

Putting It All Together

Returning to our hello world program, let’s examine the type of the
printfn function. You can get F# to tell you its type by entering the
name of the function into dotnet fsi:

> printfn;;
val it: TextWriterFormat<'a> -> 'a

Recall that we called printfn with two arguments, a strange fact that
motivated this entire discussion. So what is a TextWriterFormat<'a>
-> 'a? And why doesn’t the REPL show a type for a curried func-
tion that takes two arguments? The short answer is that it does. A
TextWriterFormat<'a> -> 'ais hiding a lot in that 'a parameter. A
longer answer is the number of arguments printfn expects depends on
what you give it as a format string. We can see this if we play around
with printfnalittle. For example, if we give it the format string "Hello,

%S 1 u’
> printfn "Hello, \V%s!";;
val it: (string -> unit) = <fun:it>
it expects one more string string before it returns something 2. If we
give printfn the format string "There are %d %ss",
> printfn "There are \’d \%ss";;
val it: (int -> string -> unit) = <fun:it>
Then we need to give it an int and a string, like so.

> printfn "There are \%d \%ss" 2 "Dan";;
There are 2 Dans

val it: unit = ()

¥ The term currying is not named for

a dish with a spicy sauce, but rather
for the 20th century mathematician,
Haskell Curry. Curry founded the field
of combinatory logic, which serves as a
theoretical basis for the design of some
functional programming languages.

2 We'll discuss unit in a moment.

Return Value

Have one last look at our program.

let main(argv: string[]) : int =
printfn("Hello, %s!") (argv[0])
0

The last line in our main function is 0. In F#, the last expression in a
function definition is the return value. If you recall, returning 0 tells the
operating system that “everything ran OK.” Any other value signals an
€errofr.

Adding a New File to a Project

By default, your project contains only a single file called Program.fs.
Unlike Java, F# does not care what you name your code files as long as
you tell it where to find the code in the MSBuild file.

I like to organize my code according to “responsibilities.” For exam-
ple, maybe I have a program that reads input, does some processing,
builds a data structure, computes some values, and then prints out the
result. In this case, I might have a file called io. fs for input and output
processing, utils.fs to handle data manipulation (like converting data
from arrays into hash tables), and algorithms.fs for the core compu-
tation. I personally like to keep very little in the Program. fs file, which
mostly just contains the main function. Unless I ask you to organize your

code in a specific manner,?’

use whatever system of organization makes
sense to you.

To add a new file to your project, you need to do two things. Suppose
we create a new file called io.fs and we want to call its code from the
Program.fs file. Look for a .fsproj file in your project directory. This
is your project specification. Open it up with your favorite code editor.

You should see something like

MORE F# 33

¥ Be on the lookout for specific instruc-
tions in lab handouts.

34

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<Compile Include="Program.fs" />
</ItemGroup>

</Project>

Weneed toadd a Compile tagjustabove the Compile tag for Program.fs
so that MSBuild will compile io.fs first. Here’s what my .fsproj file
looks like after I make the change:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</0OutputType>
<TargetFramework>net8.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<Compile Include="io.fs" />
<Compile Include="Program.fs" />
</ItemGroup>

</Project>

With this change, Program. fs is now permitted to refer to code stored
in io.fs. Note that if you see the following error when you put your
code in a separate file,

error FS0222: Files in libraries or multiple-file applications must
begin with a namespace or module declaration

, you must place your code within a module. A module is simply a unit
of code organization. To do so, put a module declaration at the top of
your file to make this error message go away. For example, in io.fs, I
might put:

module IO

and then in my Program. fs, I write

open IO

A Quick Tour of Some Other Important Ideas

Here, we explore a small number of additional foundational concepts
you will need in order to program in F#.

Primitive Types

F# has a rich set of primitive data types. These types represent fundamen-
tal categories of data. As in Java, primitive types are always written
in lowercase in F#. The primitive types are bool, byte, sbyte, int16,
uint16, int, uint, int64, uint64, nativeint, unativeint, decimal,
double, single, char, string, and unit.

Documentation for the above types may be found online®.

F# also allows one to create user-defined types. Note: by convention,
user-defined types are written in UpperCamelCase®! in F#.

Expressions

Everything in F# is an expression. Using the dotnet fsi read-eval-
print-loop (REPL) program,

> 1;;
val it : int =1

we can immediately see that anything we type into the REPL returns a
value.

There are no statements in F#, although there are functions that look

similar. Remember printfn from above? You may recall that when we
called it like

printfn "Hello, %s!" "Dan"

it returned unit. What is unit? unit signals that a function only pro-
duces a side effect. In other words, it does not return anything. Nev-
ertheless, everything in F# is an expression, so something must be re-
turned. To fit into this scheme, the special value () is returned, which

MORE F# 35

N https://docs.microsoft.
com/en-us/dotnet/fsharp/
language-reference/basic-types
'https://en.wikipedia.org/wiki/
Camel_case

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/basic-types
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case

36

means “nothing” and has type unit. Let’s see for ourselves in dotnet
fsi.

> printfn "Hello, %s!" "Dan";;
Hello, Dan!

val it : unit = ()

> O3

val it: unit = ()

Conditionals
if /else expressions look much like their counterparts in Python:

if x > 0 then
1

else
2

Since conditionals are expressions in F#, you can also use them to con-

ditionally assign values.3?

let y = if x > O then
1
else
2

Indentation is important for conditionals. Note that the body of the
true and false clauses must be indented past the start of the if expres-
sion.

Lambda Expressions

A lambda expression is a function definition without a name. Recall our
earlier discussion, where I claimed that the let expression,

let ax=x +1

was a shorthand for
let a = fun x > x + 1

I glossed over the meaning of fun x -> x + 1, but hopefully you
can see that all we're doing is defining a function that takes an int and
returns an int. An foundational idea in functional programming is that
function definition and naming are different things, and that mixing them

%2 If you know some C, this is like the
ternary operator,a 7 b : c.

together adds unnecessary complexity (and confusion). The keyword
let is for naming, and the keyword fun is for making functions. Because
we make functions frequently while programming, the shorter version
exists to save on typing. But we can see that they have the same type in
the REPL.

>let ax=x+1;;

val a: x: int -> int

> let a = fun x -> x + 1;;

val a: x: int -> int

The fun keyword makes functions definitions “anonymously.” In
other words, a lambda expression is a function definition with no name.

We are not required to name functions if we don’t want to. Remember
our friend, the identity function?

let id = fun x > x

We can call the anonymous form of this function with a literal, it com-
putes something, but nothing was ever named using let at any point in
the program.

> (fun x -> x) 1;;

val it: int =1

Lambda expressions are very useful in F#, and we use them widely in
functional programming. We'll explore these uses in a future chapter,
Higher-Order Functions.

Pragmatism Over Purity

The ML family of languages favors pragmatism over mathematical pu-
rity. Therefore, it allows a programmer great flexibility to wiggle out of
tough situations using mutable variables, side effects, imperative code,
and casts. In this class, use of mutability, side effects, imperative code,
and casts will be penalized, because it’s hard to learn functional pro-
gramming if you can lean on those features. After this class is over,
feel free to use those other features. I myself use them in some circum-
stances, particularly when it is important that my code be fast. By the
end of this semester, you will have a better appreciation for the down-
sides of these “escape hatches,” and then you can use them with a fuller
awareness of their tradeoffs.

MORE F# 37

