
Appendix A: Refresher on Files and the Shell

If you don’t know what files are, or you feel a little fuzzy on them, read
this chapter. Many students now studying CS grew up in a world where
data is stored in the cloud, so theymay never have needed tomanage files
directly. Files are a foundational concept in computer science. They are
used in all but the most trivial programs, so it’s worth your time to know
what they are. This tutorial will show you what they are, where to find
them, and how to work with them in a shell.

A file is an array of bytes stored a disk. A disk is just a physical device
capable of storing files when a computer is powered off. Tomake things
concrete, let’s start by discussing disks and proceed from there.

Disks and Filesystems

Figure 25: A 256GB NVMe SSD from a
Dell laptop. This device is roughly the
size of the first digit of your thumb. In
2025, an SSD can store data at a cost of
roughly $0.040 per billion bytes.

The most common disk now used in consumer-grade computer hard-
ware like laptops and phones is something called a solid-state disk, com-
monly referred to as an SSD. The term sold-state conveys the fact that the
device is composed entirely of electronics and contains nomoving parts.
A typical SSD like the kind you might find in your laptop is shown in
Figure 25.

226

0 1 2 3 4 5 6 7 8 9
0

2

3

4

5

6

7

8

9

T h e q u i c

k b r o w n f o

x

24 -13 0 144 18 90

C S 3 3 4 ␣ i s ␣ t

h e ␣ b e s t !

␣

␣␣

To a first approximation, the circuitry inside an SSD really does store
data in a big array. In the diagram above, we have three files, a text file
that contains the text The quick brown fox, a second file we’ll pretend
stores audio data, and a third file containing the (very obviously true)
text CS334 is the best!

Usually, a file is a contiguous121 sequence of bytes stored in the disk’s 121 Contiguous means “right next to each
other.”array. Aprogram in your computer’s operating system, called the filesys-

tem, usually decides where to place it.122 A filesystem is an abstraction 122 In practice, it is a little more com-
plicated than this, as many modern
disks themselves make data placement
decisions.

that provides a mapping from file names to disk locations. For example,
I might have the following mapping for our hypothetical disk.

Filename Location Size
essay.txt 22 19
song.mp3 35 6
best_class.docx 70 18

Table 4: A simple mapping from file-
names to disk locations.

This mapping is also stored somewhere on disk (like at offset 0) so
that when the computer starts up, the operating system can automati-
cally fetch the name mappings. The above scheme is, of course, a sim-
plification. Disks are vastly larger than the one shown in my diagram,
files are usually much larger as well, and filesystems themselves have
a lot more nuance in how they manage data. For example, we typi-
cally want to organize information hierarchically, in a recursive, tree-like
structure. The basic principle remains the same, except that a special file
called a directorymakes hierarchies possible. A directory123 file stores a 123 A directory is usually called a folder

by computer users, but programmers
tend to use the technical term because it
is more precise.

mapping that says where one can recursively find the files “inside” the
directory.

APPENDIX A: REFRESHER ON FILES AND THE SHELL 227

It’s worthmentioning that the cheapest storage, on a per-byte basis, is
magnetic storage. Magnetic tape stores data on what looks like an audio
cassette tape 26. A hard disk drive (HDD) stores data on spinning plat-
ters 27. SSDs are typically 3-4× the cost of tape or HDDs for the same
amount of storage. Magnetic storage devices aremachines withmoving
parts, and so they are sensitive to vibration and drops, which is why we
rarely see them anymore in consumer devices. However, in protected
environments, they can be both cheaper and more reliable than SSDs.
Hard disks are an excellent medium to store backups of your most im-
portant files.124 124 Thumb drives are SSDs. SSDs are a

terrible medium for backups, because
the physical property they use for data
storage degrades over time. If you put
data on a thumb drive, stick it in a desk
drawer, and then expect the data to still
be there, intact, several years later, you
may be in for a shock.

Figure 26: In 2025, an LTO-9 tape costs
roughly $0.005 per billion bytes.

Figure 27: In 2025, a hard disk drive
costs roughly $0.014 per billion bytes.

Tapes and hard disks encode the “big array” of data differently than
SSDs. Filesystemsmostly abstract over those differences so that you can
write programs the same way regardless of the medium on which you
store your data.

Files and the Shell

Let’s open up a terminal and examine some files on your computer.
Hopefully you have used a terminal before, but it you have not, a termi-
nal is a text-only interface for your computer. Expert users tend to prefer
working in a terminal over other interfaces because they can work more
efficiently by keeping their hands on a keyboard. Some expert users go
to great lengths to avoid using a touchpad or a mouse. For the most
part, any computing task you can do with a mouse you can do faster in
the terminal once you have gotten over the initial learning curve.

In the macOS, start a program called Terminal. If you are using
Linux or some other UNIX-like operating system your terminal pro-
gram may be called Terminal, Console, Konsole, xterm, or some other
variation. Microsoft Windows also has a console, called the Windows
Terminal, but by default it is configured to run cmd.exe or PowerShell,
and both of these are very different environments thanwe use in our CS
program. If you’re using Windows, I recommend installing the Win-
dows Subsystem for Linux (WSL). Then start the Windows Terminal
and select your Linux distribution (typically Ubuntu).125 125 Download WSL at https://learn.

microsoft.com/en-us/windows/wsl/
install

After starting a terminal, you should see an interactive programcalled
the shell. You may hear people refer to the shell as the “command line”;
most of the time these terms refer to the same thing. The first thing to
know about the shell is that it is a programming language. Everything
you can do in Python or Java you can also do in the shell. However,
the shell is designed to make certain tasks easy at the expense of others,
so although it is possible to write many programs in the shell, we tend

228

to use general-purpose programming languages whenwriting complex
programs.

A shell usually displays a prompt and waits for you to supply a com-
mand. The prompt on my computer as I write this looks like the follow-
ing.

dbarowy@Tash textbook %

Your prompt may look different than mine, because the prompt’s
appearance can vary depending on a user’s settings. To avoid confu-
sion when discussing the shell we adopt a convention whereby the shell
prompt is shown as a $ symbol:

$

For simplicity, I will also use $ throughout this reading.

Location

The second thing to know about the shell is that at any given time, your
interactive session has a “location” in the filesystem. Typically, after
opening the Terminal, that location is your home directory, which is a
kind of “default location” for your account on your computer. We can
find the location for our shell by typing the following.

$ pwd
/Users/dbarowy/Documents/Code/cs334-materials/textbook

(do not type the $ sign)
The pwd command means “print working directory.” As I write this,

I am working in the directory for the course textbook, so the path that is
returned for me is a subdirectory of my home directory. Try typing pwd
yourself.

Listing Files

I can find out which files are in the working directory by typing ls,
which is short for “list files.”

APPENDIX A: REFRESHER ON FILES AND THE SHELL 229

$ ls
Makefile graphics supporting_code
Makefile.aux handouts todelete
Makefile.fdb_latexmk macros.tex tufte-book.cls
Makefile.fls main.bbl tufte-common.def
Makefile.log main.tex tuftefoot.sty
bibliography.bib readings
file-offset.sh sources

As you can see, I have a lot of files in my working directory. Some
of these names are subdirectories, not files. By default, ls does not dis-
tinguish between the two, but you can add a “flag” to the ls command
and it will give you more information.

$ ls -l
total 280
-rwxr-xr-x@ 1 dbarowy staff 646 Jan 27 13:19 Makefile
-rw-r--r--@ 1 dbarowy staff 32 Jan 27 13:20 Makefile.aux
-rw-r--r--@ 1 dbarowy staff 615 Jan 27 13:20 Makefile.fdb_latexmk
-rw-r--r--@ 1 dbarowy staff 261 Jan 27 13:20 Makefile.fls
-rw-r--r--@ 1 dbarowy staff 14343 Jan 27 13:20 Makefile.log
-rwxr-xr-x@ 1 dbarowy staff 1620 Jan 28 15:19 bibliography.bib
-rwxr-xr-x 1 dbarowy staff 553 Jan 30 16:42 file-offset.sh
drwxr-xr-x 63 dbarowy staff 2016 Jan 30 14:46 graphics
drwxr-xr-x 5 dbarowy staff 160 Sep 9 2022 handouts
-rwxr-xr-x@ 1 dbarowy staff 0 Mar 28 2021 macros.tex
-rw-r--r--@ 1 dbarowy staff 443 Jan 30 16:55 main.bbl
-rwxr-xr-x@ 1 dbarowy staff 19123 Jan 30 15:26 main.tex
drwxr-xr-x 46 dbarowy staff 1472 Jan 31 13:29 readings
drwxr-xr-x 8 dbarowy staff 256 Jan 23 2024 sources
drwxr-xr-x 14 dbarowy staff 448 Aug 16 2023 supporting_code
drwxr-xr-x 4 dbarowy staff 128 Feb 26 2024 todelete
-rwxr-xr-x@ 1 dbarowy staff 2113 Mar 28 2021 tufte-book.cls
-rwxr-xr-x 1 dbarowy staff 66821 Mar 28 2021 tufte-common.def
-rwxr-xr-x@ 1 dbarowy staff 2691 Mar 28 2021 tuftefoot.sty

There’s a lot more information here, so I’m not going to discuss all
of it. The most important thing to know is that the first letter in the
first column tells you what kind of file the name represents. For exam-
ple, for the name graphics, the column containing drwxr-xr-x starts
with a d, so it is a directory. For the name Makefile, the column shows
-rwxr-xr-x@, and the starting character -means “regular file.” There’s
a lot of information packed in here, mostly about who is allowed to read
or modify files.126 126 If you’re curious, Google “unix

permissions bits” or type man ls
to access the manual page for the ls
command.

230

You can also use the file command to get the same information in a
more verbose form.

$ file graphics
graphics: directory
$ file Makefile
Makefile: makefile script text, ASCII text

For any file containing “ASCII text”, I can use the cat command to
print it out.

Viewing Files
$ cat Makefile
all: main.pdf

main.pdf: main.tex $(wildcard readings/*.tex)
latexmk -xelatex main.tex

handouts: handout-intro_to_c.pdf handout-memory_management.pdf handout-passing_pointers.pdf

handout-intro_to_c.pdf: readings/intro_to_c.tex handouts/handout-intro_to_c.tex
latexmk -xelatex handouts/handout-intro_to_c.tex

handout-memory_management.pdf: readings/memory_management.tex handouts/handout-memory_management.tex
latexmk -xelatex handouts/handout-memory_management.tex

handout-passing_pointers.pdf: readings/passing_pointers.tex handouts/handout-passing_pointers.tex
latexmk -xelatex handouts/handout-passing_pointers.tex

clean:
latexmk -C

Suppose that Makefilewas too big to fit on my screen. catwill print
the entire file, whichwould be a pain to viewwithout scrolling. Instead,
I can pipe the output to a pager program that makes it easier to view the
output.

$ cat Makefile | less

To quit the less program type q. You can also use the up and down
arrows or the Page Up/Page Down keys to navigate. Experienced shell
users are already screaming at me because they know that you can use
less directly with a file, like so:

APPENDIX A: REFRESHER ON FILES AND THE SHELL 231

$ less Makefile

However, I show you the cat Makefile | less version above be-
cause it is a nice recipe that you can apply whenever you have any pro-
gram that produces lots of output. The recipe is

$ program | less

For example, take something big and complicated like,

$ find . -iname "*.tex" -print -exec grep -iH "program" {} \; | less

I don’t expect you to know the command above. But in case you’re
curious, it finds files with names ending in .tex, then searches inside
them for the string program, and then prints the line containing each
match out. Since I’m searching in the directory that has the course text-
book, program shows up a lot, so I pipe the output to the less pager.

Editing Files

If your file contains ordinary text data, you can change the contents of
a file using a text editor. A text editor is an interactive program that
lets you easily modify the contents of a file. Some common text edi-
tors are TextEdit on the macOS, Notepad on Windows, or gedit on
Linux. There are hundreds of text editors available. Manyprogrammers
like to use a variant of a text editor called an integrated development envi-
ronment (IDE) that has productivity-enhancing features specifically for
programming tasks. Some widely-used IDEs are Visual Studio Code,
XCode, and Eclipse, and there are dozens, if not hundreds of IDEs as
well. For this section, wewill stick to a simple text editor for the terminal
called nano.

If you type nano filename, the nano program will open a file called
filename or create it if it does not exist. For example, I will open the
Makefile in my working directory.

$ nano Makefile

Because Makefile already exists, I will see something like this:

232

You can navigate this file using the arrow keys, and typing on the
keyboard will directly insert characters in the file. The bottom two rows
show shortcuts for a set of available commands. You can run a com-
mand by pressing ctrl + key . For example, the shortcut to save a file is
^O WriteOut , and what this means is that we should press ctrl + o
to save. The shortcut ^X Exit tells us that we can press ctrl + x to
quit. Be sure to pay attention to the interactive prompt that appears at
the bottom of the screen. Go ahead and quit to return to the shell.

Changing Locations

Finally, we can change directory to another location using cd. For exam-
ple, we know that graphics is a directory, so I should be able to “go”
there.

$ cd graphics

This is a good time to mention that, in UNIX, the convention is that
if you don’t explicitly ask for output, but the command succeeds, noth-
ing is printed out. So it is probably not obvious that I just changed into
the graphics directory. But we can check with a command we already
learned, right?

$ pwd
/Users/dbarowy/Documents/Code/cs334-materials/textbook/graphics

APPENDIX A: REFRESHER ON FILES AND THE SHELL 233

Optional: Peeking Behind the Abstractions

When you program in a computer, you’re usually seeing data through
many abstractions. Those abstractions are there to help you, but some-
times they can get in the way. To finish off the tutorial, I thought I’d
show you a little more to help you “see through” the abstractions pro-
vided by the filesystem. To be clear, this section is optional reading.
However, since you presumably opted into studying computer science
willingly, why not take the time to read on? The information in this
section is interesting and will serve you well in the future.

Let us pose the following question: if files really are just big arrays
of bytes on a physical disk, can we see those bytes? The answer is yes,
definitely.

We will start by determining the names of the physical disk devices
in my computer.

$ mount
/dev/disk3s1s1 on / (apfs, sealed, local, read-only, journaled)
devfs on /dev (devfs, local, nobrowse)
/dev/disk3s6 on /System/Volumes/VM (apfs, local, noexec, journaled, noatime, nobrowse)
/dev/disk3s2 on /System/Volumes/Preboot (apfs, local, journaled, nobrowse)
/dev/disk3s4 on /System/Volumes/Update (apfs, local, journaled, nobrowse)
/dev/disk1s2 on /System/Volumes/xarts (apfs, local, noexec, journaled, noatime, nobrowse)
/dev/disk1s1 on /System/Volumes/iSCPreboot (apfs, local, journaled, nobrowse)
/dev/disk1s3 on /System/Volumes/Hardware (apfs, local, journaled, nobrowse)
/dev/disk3s5 on /System/Volumes/Data (apfs, local, journaled, nobrowse, protect, root data)
map auto_home on /System/Volumes/Data/home (autofs, automounted, nobrowse)

Each unique prefix /dev/diski is a distinct physical disk. You can
see above there are two unique prefixes, so I have two physical disks in
my computer, /dev/disk1 and /dev/disk3. The next part of the name,
sj, denotes the logical disk. A logical disk is an abstraction that lets me
treat a slice of the array on the disk as if it were its own physical disk.
For example, /dev/disk3s5 says that I should treat the fifth slice on disk
three as its own physical disk. It also says that the /dev/disk3s5 logical
disk should appear in the filesystem as /System/Volumes/Data.

And hey, check it out! I can use ls to see what’s in there:

$ ls /System/Volumes/Data
Applications Volumes private
Library cores sw
MobileSoftwareUpdate home usr
System mnt
Users opt

234

So far, we have used cat, less, and nano to examine files. These pro-
grams strongly assume that the data stored in a file is textual. But files
can contain any kind of data. The data could be image data, or video
data, or audio data, or whatever. As mentioned in the preface, one of
the astounding facts about computers is that they don’t actually know
about any of these data types. In reality, all data is stored as an array of
numbers on a computer. When you run cat or less, that numeric data
is interpreted as text data. We can actually look at the raw numeric data
if we want.

$ hexdump -C graphics/sciam-1973.png | less
00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 |.PNG........IHDR|
00000010 00 00 04 c6 00 00 06 94 08 06 00 00 00 1b d4 10 |................|
00000020 19 00 00 01 56 69 43 43 50 49 43 43 20 50 72 6f |....ViCCPICC Pro|
00000030 66 69 6c 65 00 00 28 91 6d 90 c1 4a 02 61 14 85 |file..(.m..J.a..|
00000040 8f 65 28 66 60 e1 2a 0a 84 20 24 54 c2 14 da aa |.e(f`.*.. $T....|
00000050 81 45 2e 26 35 a8 68 d1 38 9a 06 3a fd fd 4e 84 |.E.&5.h.8..:..N.|
00000060 d0 43 b4 8f 76 6d a2 17 08 57 ed da b4 0b 8a a0 |.C..vm...W......|
00000070 1e a0 65 04 22 94 4c 67 9c 4a ad 2e 5c ee c7 e1 |..e.".Lg.J..\...|
00000080 dc cb e5 00 43 6e 55 88 aa 13 40 4d 37 64 36 9d |....CnU...@M7d6.|
00000090 0c 6c 6c 6e 05 5c 2f 70 c0 03 37 c2 08 aa 5a 5d |.lln.\/p..7...Z]|
000000a0 24 14 25 43 0b be e7 60 b5 ee e9 66 dd 85 ad 5b |$.%C...`...f...[|
000000b0 73 33 c9 cb f1 c9 e7 8b d7 5a 46 cf b5 7d e7 7f |s3.......ZF..}..|
000000c0 fd 03 e5 29 96 ea 1a e7 07 3b a2 09 69 00 8e 10 |...).....;..i...|
000000d0 59 39 32 84 c5 c7 64 bf e4 53 e4 13 8b cb 36 5b |Y92...d..S....6[|
000000e0 77 fd 05 9b af ba 9e 7c 36 45 be 25 fb b4 8a 5a |w......|6E.%...Z|
000000f0 24 3f 91 43 85 3e bd dc c7 b5 ea a1 f6 f5 83 f5 |$?.C.>..........|
00000100 bd b7 a4 af e7 38 27 d8 53 c8 20 8d 00 96 b1 84 |.....8'.S.|
...

The hexdump program prints each byte in the file as a two-character
hexadecimal number. The column on the left shows the location (aka
“offset”) within the file where the leftmost byte starts. The output also
shows the interpretation of the bytes as text on the right in case that ends
up beingmeaningful. For this file, it doesn’tmean anything, because the
file contains only image data. But were I to run hexdump on a text file, I
would see the text on the right along with the corresponding bytes.

If you really want to see the binary data, we can do that too, although
we rarely do this because it’s usually better to work with a hexadecimal
or textual interpretation of the data.

APPENDIX A: REFRESHER ON FILES AND THE SHELL 235

$ xxd -b graphics/sciam-1973.png | less
00000000: 10001001 01010000 01001110 01000111 00001101 00001010 .PNG..
00000006: 00011010 00001010 00000000 00000000 00000000 00001101
0000000c: 01001001 01001000 01000100 01010010 00000000 00000000 IHDR..
00000012: 00000100 11000110 00000000 00000000 00000110 10010100
00000018: 00001000 00000110 00000000 00000000 00000000 00011011
0000001e: 11010100 00010000 00011001 00000000 00000000 00000001
00000024: 01010110 01101001 01000011 01000011 01010000 01001001 ViCCPI
0000002a: 01000011 01000011 00100000 01010000 01110010 01101111 CC Pro
...

With a bit more digging, you can even find the offset in the logical
disk where a file starts. I will leave this as an exercise to the reader.127 127 Another good exercise for the reader

is why I said “offset for the logical disk”
and not “offset for the physical disk.”

Summary
There’s a lot more to know about files, filesystems, and disks. If you
know everything in this chapter, you will be well positioned to under-
stand everything you need to know for this course (and for many other
CS courses).

