
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: Variables

Topics

Variables
Implementing variables

Announcements

•Friday Colloquium: Pre-registration Info Session,
2:35pm in Wege Auditorium.

Announcements
•Johnny Mnemonic, TONIGHT!, Apr 24 @ 7pm in
Wege Auditorium

Benefits:

• Fun!
• Snacks!
• You will finally be able to understand your

professor’s jokes!
• You will be able to converse fluently with other

nerds!
• You might learn a little computer science!
• Did I mention snacks?!!
• Sponsored by Jim Bern

Your to-dos

1. Read for next week: Implementing Variables,
Implementing Scope.

2. Next week’s quiz will be on type inference. 
Refer to slides and practice problem for study.

3. Lab 10, Project checkpoint #3, due
Wednesday, April 30 by midnight.

Final project timeline

1. Brainstorm (Lab 7), due Wed 4/9
2. Project Proposal (Lab 9), due Wed 4/23
3. Minimally working version (Lab 10), due Wed 4/30
4. Final project + video presentation (Lab 11), due

Wed 5/14

Variables

Variables

A variable is a named placeholder for a value in an
expression. At runtime, when a value is assigned to a
variable, that variable name is bound to the value within
the variable’s scope. When a variable is used in an
expression, the bound value is substituted into the
expression when the expression is evaluated.

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq{ }

{ } is an “environment”

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ }

{ } is an “environment”

x 2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

3 2

9

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

9

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq
{x → 2}

{ } is an “environment”

x 2

2

3 2

9 1

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{x → 2}

{ } is an “environment”

x 2

2

3 2

9 1

10

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

{ } is an “environment”

x 2

2

3 2

9 1

10

10

Example

+

^

3 x

1

3^x + 1
x := 2

:=

2x

seq

Cool, huh?

x 2

2

3 2

9 1

10

10

Every CS major should know this.

How does it work?

 <expr> ::= <parens>
 | <print>
 | <assign>
 | <string>
 | <num>
 | <var>
 | <plus>
 <parens> ::= (<expr>)
 <print> ::= print <expr>
 <assign> ::= <var> := <expr>
 <string> ::= " <char> "
 <char> ::= [any character that is not double quote]
 <num> ::= <digit>+
 <var> ::= <ltr><varchar>+
<varchar> ::= <ltr> | <digit>
 <ltr> ::= A | .. | Z | a | .. | z
 <digit> ::= 0 | .. | 9
 <plus> ::= <expr> + <expr>

Blub

(code) Project Activity

Project Activity
Find a partner who is not your project partner.

I will prompt you when to move to the next step in the
procedure below.

Each of you will do the following in turn:

1. (~3 minutes) Explain your project to your partner. Be
sure to discuss at least one primitive and one combining
form, and be sure to describe the form of the input and the
form of the output.

2. (~3 minutes) Your partner explains your project back to
you. Take note which concepts they have trouble
explaining back to you.

3. Swap roles and go to step 1.

Recap & Next Class

Today:

Next class:
Scope/Packages

Variables

