

- Snacks!
- You will finally be able to understand your professor's jokes!
- You will be able to converse fluently with other nerds!
- You might learn a little computer science!
- Did I mention snacks?!!
- · Sponsored by Jim Bern

April 23 by midnight.

Topics

Type checking

Type inference

Cool things made possible by the lambda calculus!

Type checking (or, "how does my compiler know that my expression is wrong?")

let f(x:int) : int = "hello" + x

let f(x:int) : int = "hello" + x;;

stdin(1,32): error FS0001: The type 'int' does not match the type 'string'

A refresher on "curried" expressions

let f(a: int, b: int, c: char) : float = ...

f is a:int * b:int * c:char -> float

let f(a: int)(b: int)(c: char) : float = ...

f is int -> int -> char -> float

let f a b c = \dots

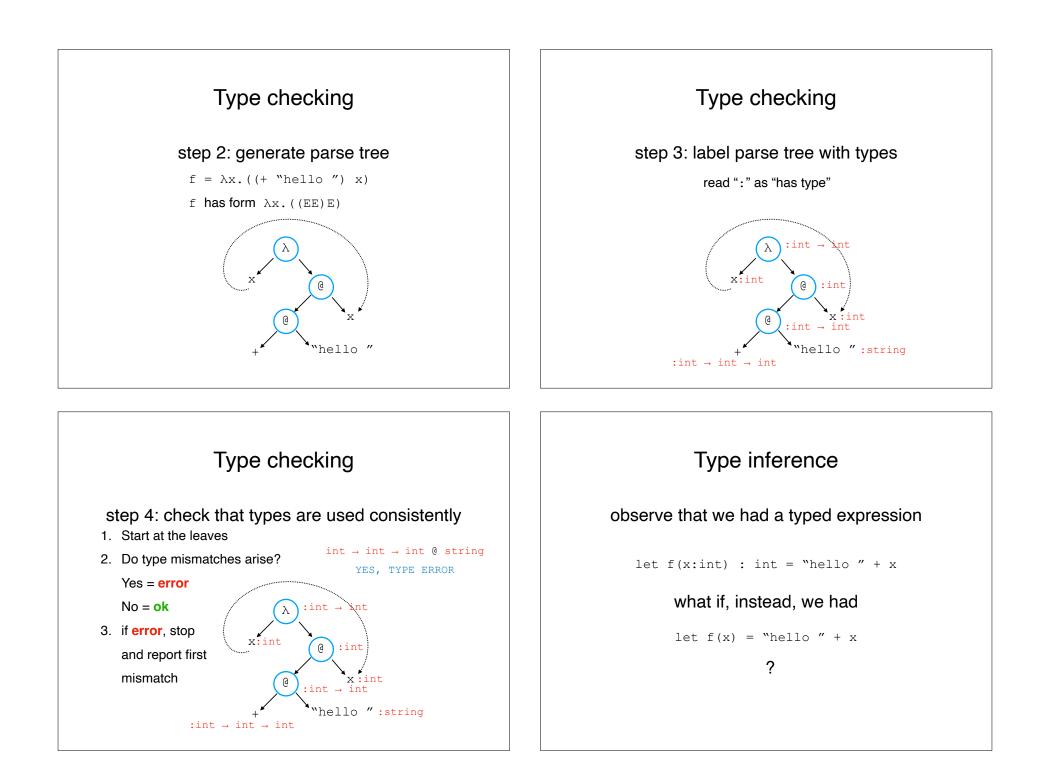
 $f = \lambda a.\lambda b.\lambda c...$

Type checking

step 1: convert into lambda form

let f(x:int) : int = "hello" + x $f = \lambda x$."hello " + x convert into λ expression $f = \lambda x$. (+ "hello " x) assume + = λx . λy . (x + y)

The purpose of this step is to make all of the parts of an expression clear



Hinley-Milner algorithm

J. Roger Hindley

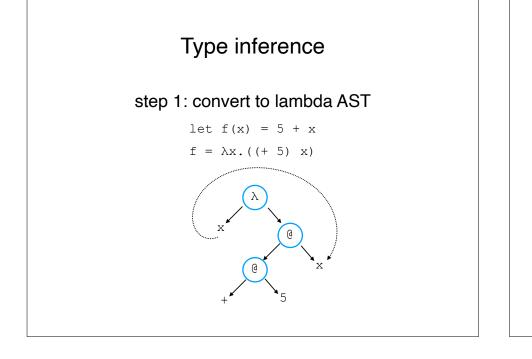
- Hindley and Milner invented algorithm independently.
- Infers types from known data types and operations used.
- Depends on a step called "unification".
- I will demonstrate informal method for unification; works for small examples

Robin Milner

Hinley-Milner algorithm

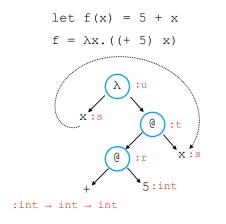
Has three main phases:

- 1. Assign known types to each subexpression
- 2. Generate type constraints based on rules of λ calculus:
 - a. Abstraction constraints
 - b. Application constraints
- 3. Solve type constraints using unification.



Type inference

step 2: label parse tree with known/unknown types



Type inference

it is often helpful to have types in tabular form

subexpression	type
+	int \rightarrow int \rightarrow int
5	int
(+5)	r
х	S
(+5) x	t
λx.((+ 5) x)	u

Type inference

step 3: generate constraints

<expr> ::= <var> variable

λ<var>.<expr> abstraction

<expr><expr> function application

Three rules, each corresponding to a kind of λ expression.

3.1. <var> constraint

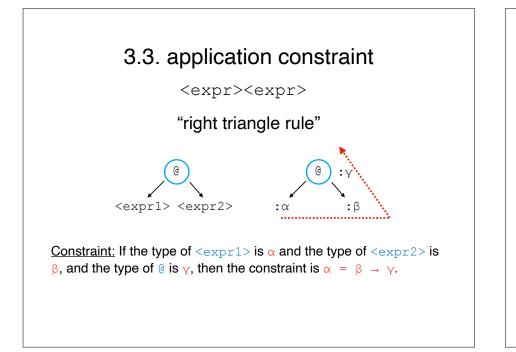
No constraint.

3.2. abstraction constraint

λ<var>.<expr>

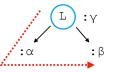
"left triangle rule"

<u>Constraint:</u> If the type of $\langle var \rangle$ is α and the type of $\langle expr \rangle$ is β , and the type of λ is γ , then the constraint is $\gamma = \alpha \rightarrow \beta$.

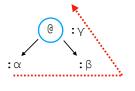


constraints summary

<u>Abstraction</u>: If the type of $\langle var \rangle$ is α and the type of $\langle expr \rangle$ is β , and the type of λ is γ , then the constraint is $\gamma = \alpha \rightarrow \beta$.



<u>Application</u>: If the type of $< expr1 > is \alpha$ and the type of $< expr2 > is \beta$, and the type of @ is γ , then the constraint is $\alpha = \beta \rightarrow \gamma$.



Type inference

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	r	int \rightarrow int \rightarrow int = int \rightarrow
Х	S	n/a
(+5) x	t	$r = s \rightarrow t$
λx.((+ 5) x)	u	$u = s \rightarrow t$

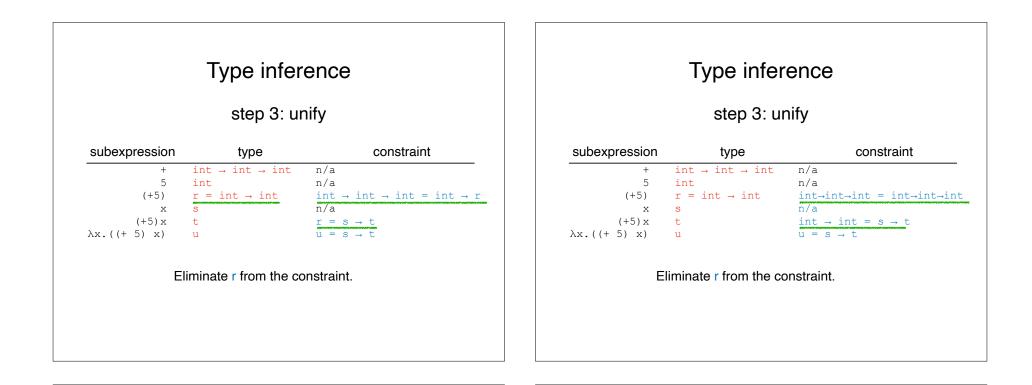
Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	r	int \rightarrow int \rightarrow int = int \rightarrow r
X	S	n/a
(+5) x	t	$r = s \rightarrow t$
λx.((+ 5) x)	u	$u = s \rightarrow t$

Start with the topmost unknown. What do we know about r?

int \rightarrow int \rightarrow int = int \rightarrow r r = int \rightarrow int



Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	$r = int \rightarrow int$	int→int→int = int→int→int
Х	S	n/a
(+5) x	t	int \rightarrow int = s \rightarrow t
λx.((+ 5) x)	u	$u = s \rightarrow t$

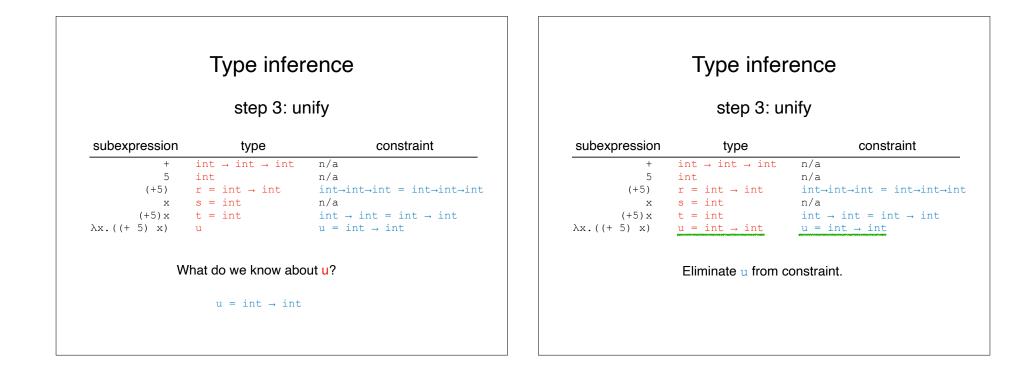
What do we know about s and t?

int \rightarrow int = s \rightarrow t s = int t = int

Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	$r = int \rightarrow int$	int→int→int = int→int→int
Х	s = int	n/a
(+5) x	t = int	int \rightarrow int = s \rightarrow t
λx.((+ 5) x)	u	$u = s \rightarrow t$



Type inference

step 3: unify

subexpression	type	constraint
+	int \rightarrow int \rightarrow int	n/a
5	int	n/a
(+5)	$r = int \rightarrow int$	int→int→int = int→int→int
Х	s = int	n/a
(+5) x	t = int	int \rightarrow int = int \rightarrow int
λx.((+ 5) x)	$u = int \rightarrow int$	int \rightarrow int = int \rightarrow int

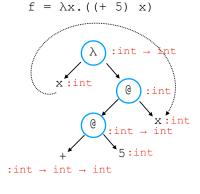
Done when there is nothing left to do.

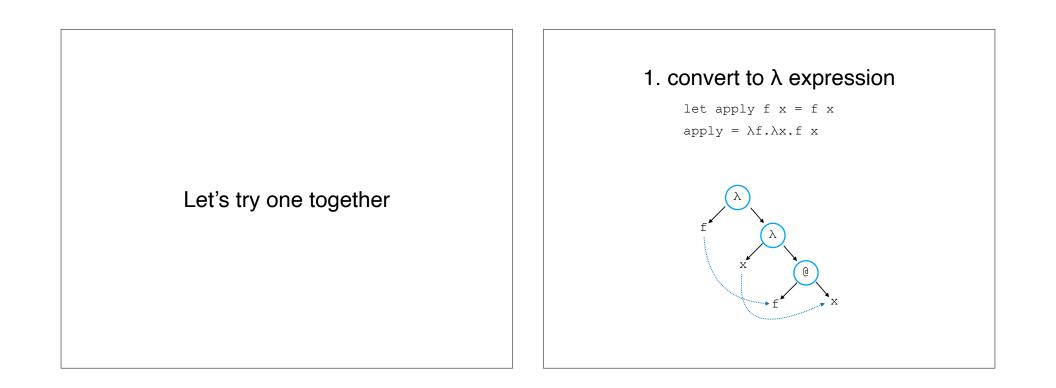
Sometimes unknown types remain.

An unknown type means that the function is polymorphic.

Completed type inference

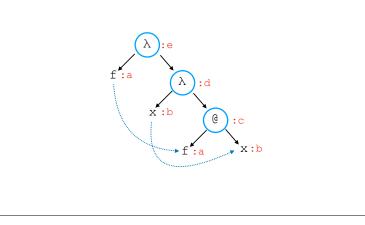
let f x = 5 + x



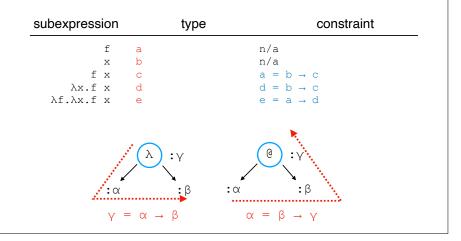


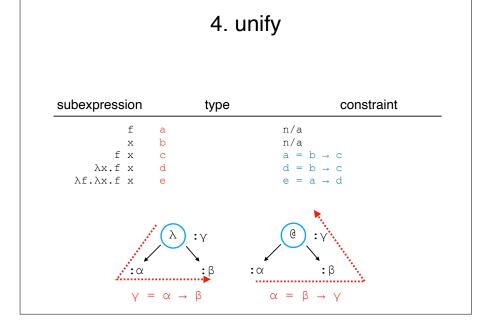
2. label with type variables

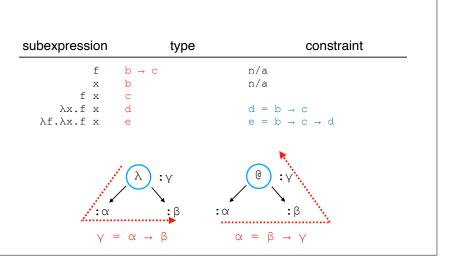
let apply f x = f x apply = $\lambda f \cdot \lambda x \cdot f x$



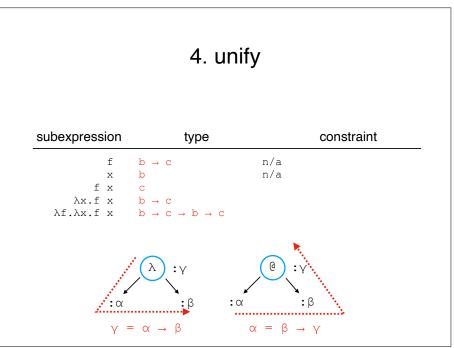
3. generate constraints



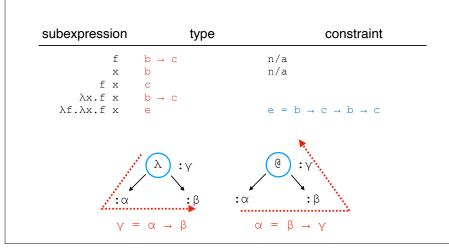


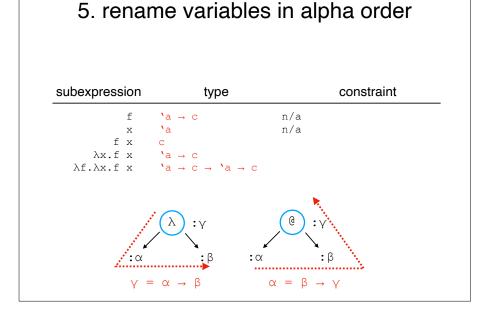


4. unify

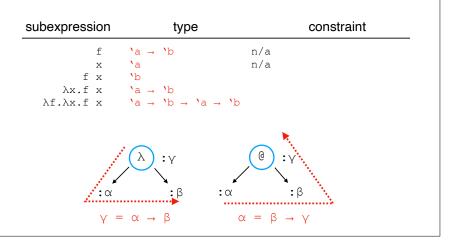


4. unify

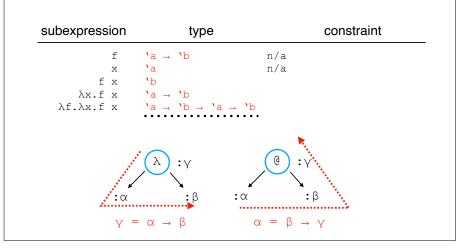


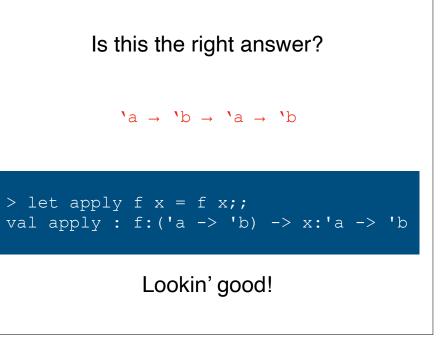


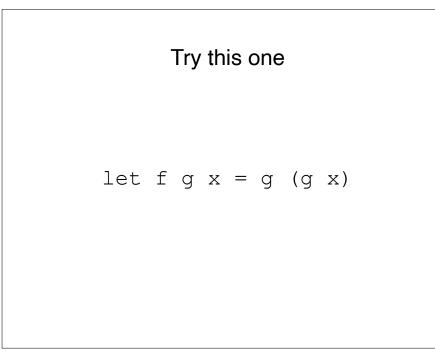
5. rename variables in alpha order



5. rename variables in alpha order







Today:

Type inference

Next class:

Variables