Announcements

CSCI 334: -Friday Colloquium: Pre-registration Info Session,
Principles of Programming Languages 2:35pm in Wege Auditorium.

Lecture 17: Type inference
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UELFTIN
Instructor: Dan Barowy COURSE CATALOG ~ SEPTEMBER 2009
Williams
Announcements Your to-dos

+Johnny Mnemonic, Thurs, Apr 24 @ 7pm in
Wege Auditorium

JOHNNY ===
M";EMUN'C Benefite: 1. Read for Thursday: Evaluation.
NN Yy 2. Lab 9, Project checkpoint #2, due Wednesday,

+ Snacks! Aprll 23 by mldnlght

» You will finally be able to understand your
professor’s jokes!

* You will be able to converse fluently with other
nerds!

* You might learn a little computer science!

» Did | mention snacks?!!

» Sponsored by Jim Bern




Topics

Type checking
Type inference

Cool things made possible by
the lambda calculus!

Type checking

(or, “how does my compiler know
that my expression is wrong?”)

let f(x:int) : int = “hello” + x

let f(x:int) : int = "hello" + x;;

stdin(1,32): error FS0001: The type 'int' does not
match the type 'string'

A refresher on “curried” expressions

let f(a: int, b: int, c: char) : float = ..
£ is a:int * b:int * c:char -> float
let f(a: int) (b: int) (c: char) : float = ..
£ is int -> int -> char -> float
let fabec=.

f = Aa.Ab.Ac...

Type checking

step 1: convert into lambda form

let f(x:int) : int = “hello” + x
f = Ax.“hello ” + x convert into A expression

f = Ax. (+ “hello ” x) assume + = Ax.Ay.(x +y)

The purpose of this step is to make all of the parts of
an expression clear




Type checking

step 2: generate parse tree
f = Ax. ((+ “hello ") x)

Type checking

step 3: label parse tree with types

read “:” as “has type”

:int - int - int

Type checking

step 4: check that types are used consistently
1. Start at the leaves

. \ int - int - int @ string
2. Do type mismatches arise?
YES, TYPE ERROR

Yes =error e
No = ok @ :int »1nt
3. iferror,stop |\l
i X:int ot
and report first
mismatch x tint
:int - int

+ “hello ” :string
:int - int - int

Type inference

observe that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let £(x) = “hello ” + x

?




Hinley-Milner algorithm

Hindley and Milner
invented algorithm
independently.

Infers types from known
data types and
operations used.

Depends on a step called
“unification”.

| will demonstrate IR
informal method for '
J. Roger Hindley unification; works for Robin Milner
small examples

AN

Hinley-Milner algorithm

Has three main phases:

1. Assign known types to each subexpression

2. Generate type constraints based on rules of A calculus:
a. Abstraction constraints
b. Application constraints

3. Solve type constraints using unification.

Type inference

step 1: convert to lambda AST

let f(x) =5 + x

Type inference

step 2: label parse tree with known/unknown types

let f(x) =5 + x

:int - int - int




Type inference

it is often helpful to have types in tabular form

subexpression type
+ int - int - int
5 int
(+5) r
X S
(+5) x t
AX. ((+ 5) x) u

Type inference
step 3: generate constraints

<expr> ::= <var> variable
|  A<var>.<expr> abstraction

|  <expr><expr> function application

Three rules, each corresponding to a kind
of A\ expression.

3.1. <var> constraint

No constraint.

3.2. abstraction constraint

A<var>.<expr>
“left triangle rule”
® O
7N SN

<var> <expr> S B

Constraint: If the type of <var> is o and the type of <expr> is 8,
and the type of A is v, then the constraintisy = o - B




3.3. application constraint

<expr><expr>

“right triangle rule”
3
® @,
N\ N\

<exprl> <expr2> Het :B

.............................. -

Constraint: If the type of <expr1>is o and the type of <expr2> is
3, and the type of @ is v, then the constraintis o = 3 - .

constraints summary

Abstraction: If the type of <var> is o and the type of <expr> is B,

and the type of A is v, then the constraintis v = o — p.

Application: If the type of <expr1> is o and the type of <expr2> is
3, and the type of @ is v, then the constraintis o« = 3 - v.

Type inference

subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r int - int - int = int - r
X s n/a
(+5) x t r=s -t
Ax. ((+ 5) x) u u=s-o-+t

Type inference

step 3: unify
subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r int - int - int = int - r
X s n/a
(+5) x t r = > €
Ax. ((+ 5) x) u u = » €

Start with the topmost unknown. What do we know about +?

int - int - int = int - r
r = int - int




Type inference Type inference
step 3: unify step 3: unify
subexpression type constraint subexpression type constraint
+ int - int - int n/a + int - int - int n/a
5 int n/a 5 int n/a
(+5) r = int - int int - int - int = int - r (+5) r = int - int int-int-int = int-int-int
X S n/a X s n/a
(+5) x t r =s - t (+5) x t int - int = s - t
AX. ((+ 5) x) u u=3s -t AX. ((+ 5) x) u u=s-=t
Eliminate r from the constraint. Eliminate r from the constraint.
Type inference Type inference
step 3: unify step 3: unify
subexpression type constraint subexpression type constraint
+ int - int - int n/a + int - int - int n/a
5 int n/a 5 int n/a
(+5) r = int - int int-int-int = int-int-int (+5) r = int - int int-int-int = int-int-int
X s n/a x s = int n/a
(+5) x t int - int = s - t (+5) x t = int int - int = s - t
Ax. ((+ 5) x) u u=s o>t AxX. ((+ 5) x) u u=s -t
What do we know about s and t? Eliminate s and t from constraint.
int - int = s - t
s = int
t = int




Type inference

Type inference

step 3: unify step 3: unify
subexpression type constraint subexpression type constraint
+ int - int - int n/a + int - int - int n/a
5 int n/a 5 int n/a
(+5) r = int - int int-int-int = int-int-int (+5) r = int - int int-int-int = int-int-int
X s = int n/a X s = int n/a
(+5) x t = int int - int = int - int (+5) x t = int int - int = int - int
AX. ((+ 5) x) u u = int - int AX. ((+ 5) x) u = int - int u = int - int
What do we know about u? Eliminate u from constraint.
u = int - int
Type inference Completed type inference
step 3: unify let £x =5+ x
. . f = Ax. ((+ 5) x)
subexpression type constraint |
+ int - int - int n/a e T o,
5 int n/a @ :int H.."ixnt
(+5) r = int - int int-»int-int = int-int-int ",
x s = int n/a / \
(+5) x t = int int - int = int - int X int @ int
Ax. ((+ 5) x) u = int - int int - int = int - int | |

Done when there is nothing left to do.
Sometimes unknown types remain.

An unknown type means that the function is polymorphic.

o N
X :1int

:int - int

+“/ \S:int

:int - int - int




Let’s try one together

1. convert to A expression

let apply £ x = £ x
apply = Af.Ax.f x

2. label with type variables

let apply £ x = £ x
apply = Af.Ax.f x

3. generate constraints

subexpression type constraint
f a n/a
X b n/a
f x c a=>b-c
Ax.f x d d=Db - c
Af.Ax.f x e e = a - d
h’




4. unify

subexpression type constraint
i a n/a
X b n/a
f x c a=>b - c
Ax.f x d d=Db - c
Af.Aax.f x e e a - d

4. unify

subexpression type constraint
£ b - ¢ n/a
X b n/a
f x (¢}
Ax.f x d d=Db - c
Af.Ax.f x e e=Db -c - d

M o : . M0
Senrnsnsrerereresasanany >B ..................... B.. e LTLLTTITEERR >B ..................... B..
Y o - B o =B v Y o - B oa =B v
4. unify 4. unify
subexpression type constraint subexpression type constraint
f b - ¢ n/a f b - c n/a
X b n/a X b n/a
f x c f x c
Ax.f x b - ¢ Ax.f x b - ¢
Af.Ax.f x e e =b c - b C A Ax.f x b c > b oc
3 »
O O O O
: o : : et
ELLCECPCPEPELECECECEEEEE >B ..................... B.. Senrnsnsrerererenaranan) >B ..................... B..
vy = o - a =B -V y = o - B a =B -v




5. rename variables in alpha order

subexpression type constraint
i ‘a - ¢ n/a
x a n/a
f x c
Ax.f x ‘a - ¢
Af.Aax.f x a -»c - ‘a-c

5. rename variables in alpha order

subexpression type constraint
£ ‘a - ‘b n/a
X ‘a n/a
f x ‘b
Ax.f x ‘a - ‘b
Af.Ax.f x ‘a - ‘b - ‘a - ‘b

5. rename variables in alpha order

subexpression type constraint
f ‘a - ‘b n/a
X ‘a n/a
fox ‘b
Ax.f x ‘a - ‘b
AfAx.f X ‘a - b a - b
h‘

> let apply x = f x;;
( v

a —-—> 'b) > x:'a —>

f
val apply : f:

Lookin’ good!




Try this one

Recap & Next Class

Today:

Type inference

Next class:

Variables




