
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 14: Program interpretation

Your to-dos

1. Read Parsing if you have not already done so.
2. Lab 8, due Wednesday, April 16 (partner lab).

Announcements
•Ellie Pavlick, Brown University
•Not-Your-Mother's-Connectionism: LLMs as
Cognitive Models, Fri, Apr 18 @ 2:35pm in
Wege Auditorium

Ellie Pavlick is an Assistant Professor of Computer Science and
Linguistics at Brown University, and a Research Scientist at
Google Deepmind.

Recent advances in AI have led to large neural network models
which exhibit human-like behavior across a range of language
and reasoning tasks. This (re-)opens important theoretical
questions about the nature of the structure that is required to
support such behaviors, leading to debates reminiscent of long-
running arguments that pit neural network models against
explicitly structured symbolic models of the mind. In this talk, I
will describe a series of experiments which highlight the ways in
which LLMs today appear importantly different from the
connectionist systems that inspired these debates originally. I
will argue for a more nuanced stance which does not assume
neural networks to be diametrically opposed to traditional
models of the mind, but still acknowledges the potential of LLMs
to teach us something fundamentally new about the structures
that govern language and cognition in humans.

Announcements

Please consider being a TA next semester 
(especially for this class!) 

 
Applications due Friday, April 18. 

 
https://csci.williams.edu/tatutor-application/

Announcements

Please consider providing TA feedback  
 

Feedback due Friday, April 18. 
 

https://forms.gle/sbqCGVLAFnhUQ4i39

Announcements
•Midterm exam, in class, Thursday, May 8.

Final project timeline

1. Brainstorm (Lab 7), due Wed 4/9
2. Project Proposal (Lab 9), due Wed 4/23
3. Minimally working version (Lab 10), due Wed 4/30
4. Final project + video presentation (Lab 11), due

Wed 5/14

Student final projects in this class are routinely
nominated for the Ward Prize.

Topics

Program interpretation
Demo

What is a programming language?

What is a programming language?

MyPL

ç

What is a programming language?

SQL

çSELECT * FROM Employee

WHERE EmpId > 3000

What is a programming language?

C

çint main() {…}

What is a programming language?

pluslang

ç(plus 1 2)

3

What is a programming language?

MyPL

ç

What is a programming language?

parser evaluatorAST

ç

Program Interpreter

Program Interpreter

A program interpreter is a computer program that
“interprets” given statements or expressions in a
programming language. Unlike a compiler, an interpreter
directly carries out the instructions implied by user code,
usually by traversing an abstract syntax tree and carrying
out the sequence of operations discovered during the
traversal.

pluslang

<expr> ::= (plus <expr> <expr>)
 | n ∈ ℕ

(plus 1 2)

(plus (plus 1 2) 3)

(plus (plus 1 2) (plus 3 4))

Example

+

+

3 2

1

(plus (plus 3 2) 1)

Example

Eager evaluation: usually a post-order traversal of an AST.

+

+

3 2

1

(plus (plus 3 2) 1)

Example

Eager evaluation: usually a post-order traversal of an AST.

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

3

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

3

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

3 2

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

3 2

5

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

3 2

5

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

3 2

5 1

(plus (plus 3 2) 1)

+

+

3 2

1

Example

Eager evaluation: usually a post-order traversal of an AST.

3 2

5 1

6

This traversal is conveniently written as a recursive function.

(plus (plus 3 2) 1)

+

+

3 2

1
Let’s write the interpreter

But we will write the parser first

Recap & Next Class

Today:

Next class:
A graphical language

Program interpretation

