
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 12: Parsing

Topics

Parser combinators

Your to-dos

1. Trip to WCMA on Thursday. Go directly there. 
Be sure to bring your notes from last time.

2. Read Gumptionology 101 and Beating the
Averages for this week’s quiz (take home).

3. Lab 7, due Wednesday, April 9 (partner lab). 
This is project checkpoint #1!

4. Read Parsing for next week’s lab.

Announcements
•Class of 1960’s speaker series: Tim Kraska, MIT!
•Generative AI is Overhyped But Real, Thurs, Apr
10 @ 7:30pm in Wachenheim Auditorium

•ML and Generative AI for Data Systems, Thurs,
Apr 11 @ 2:35pm in Wege Auditorium  

Tim Kraska is an Associate Professor of Electrical Engineering
and Computer Science in MIT’s Computer Science and Artificial
Intelligence Laboratory, co-director of the new GenAI Impact
Initiative at MIT, a director of applied science at Amazon Web
Services (AWS), and was a co-founder of Instancio and of
Einblick Analytics (both acquired). Currently, his research
focuses on using ML/GAI for (data) systems and agentic
systems. Before joining MIT, Tim was an Assistant Professor at
Brown and spent time at Google Brain. Tim is a 2017 Alfred P.
Sloan Research Fellow in computer science and received
several awards including the VLDB Early Career Research
Contribution Award, the Intel Outstanding Researcher Award,
the VMware Systems Research Award, the university-wide Early
Career Research Achievement Award at Brown University, an
NSF CAREER Award, as well as several best paper and demo
awards.

Announcements

Please consider being a TA next semester 
(especially for this class!) 

 
Applications due Friday, April 18. 

 
https://csci.williams.edu/tatutor-application/

Resubmissions

Resubmission procedure

The goal of this
course is skill mastery.

Allows you to earn up to 50%
of the lost points.

E.g., if you got a 50% on the midterm,
you can get a 75% on resubmission.

Each midterm is 20% of your final grade.
This is worth doing!

Resubmission procedure

1. You have until the end of reading
period.

2. Resubmission must include both the
original work and the new submission.

3. Must be accompanied by an explanation
document, written in plain English.

4. You cannot resubmit something you
never did.

Resubmission procedure

1. What the mistake is.
2. How you fixed the mistake.
3. Why the new version is correct.

Resubmission procedure

Explanation document must identify:

Resubmission procedure

Resubmit code electronically
(i.e., using git).

Resubmit exam on paper
(i.e., hand it to me or put in dropbox).

Handwritten resubmissions
will not be accepted.

Type them and print them out.

Resubmission procedure
Sample from CS334:

Parser Combinators

Basic Primitives

• Input 
type Input = string * int * bool

• Output 
type Outcome<'a> =

| Success of result: 'a * remaining: Input

| Failure of fail_pos: int * rule: String

Basic Primitives

• A parser is 
type Parser<'a> = Input -> Outcome<‘a>

• Keep in mind: a parser is a function.

Two varieties of parser

• Parsers that consume input. Correspond with

grammar terminals.

• Parsers that combine parsers. Correspond with

grammar non-terminals.

• For flexibility, you can also have parsers that do

both.

• Parser combinators are themselves a mini

programming language.

Terminal parsers

pchar(c: char): Parser<char>

> let input = prepare "ddd";;
val input: Input = ("ddd", 0, false)

> let d = pchar 'd';;
val d: Parser<char>

> d input;;
val it: Outcome<char> = Success ('d', ("ddd", 1, false))

Combining parsers
pseq

 (p1: Parser<'a>)

 (p2: Parser<'b>)

 (f:'a -> 'b -> 'c)

 : Parser<char>

> let dd = pseq d d (fun (x,y) -> (string x) + (string y));;
val dd: Parser<string>

> dd input;;
val it: Outcome<string> = Success ("dd", ("ddd", 2, false))

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p1 is a parser.

Combining parsers

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• p2 is a parser.

Combining parsers

• pseq :

 p1:Parser<‘a>

 ->

 p2:Parser<'b>

 ->

 f:('a * 'b -> 'c) -> Parser<‘c>

• f is a function that takes the result of p1 and p2 and

does something with it. That something is up to you.

Combining parsers

Let’s try it

• pseq (pchar ‘z’) (pchar ‘o’) id

• id is F#’s identity function.

• Let’s play with this in fsharpi.

More details

• It is critical that you read the “Parser Combinators”

reading.

• I suggest that you sit down, uninterrupted, for an hour
or two, and work through the examples in fsharpi.

• The reading walks you though coding up the

Combinator.fs library that you are given for Lab 8.

Example: brace language

• An expression is a sequence of terms, consisting of at

least one term.

• A term is either 'aaa', 'bbb', or a brace expression.

• A brace expression is '{', followed by an expression,

followed by '}'.

Example: brace language

<expr> ::= <term>+
<term> ::= aaa
 | bbb
 | <brace>
<brace> ::= { <expr> }

Let’s write a parser for this language.

Recap & Next Class

Today:

Next class:
WCMA field trip #2

Parser combinators

