
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: Language Architecture

Topics

How do programs run?
Garbage collection

Your to-dos

1. Lab 6, due Wednesday 3/19 (partner lab)
2. Review for midterm next week.
3. Start reading Gumptionology 101 and Proof by

Reduction.

Announcements

•CS Colloquium this Friday, Mar 14 @ 2:35pm in
Wege Auditorium (TCL 123)

Effective Evaluations of Large Language Models
for Complex Problems
Prof. Niranjan Balasubramanian (Stony Brook)

Evaluation efforts are central to understanding and improving
the capabilities of Large Language Models on complex problems.
In the first part of this talk, I will present a set of ideas
to create effective complex reasoning tasks for a range of
tasks such as question answering, theory-of-mind analyses,
procedure understanding, and biomedical natural language
inference. In the second half, I will present our recent work
on developing a rigorous benchmark that can test automation for
solving complex tasks involving commonly used apps.

How do programs run?

How do programs run?

int main() {
 printf(“hello\n”);
 return 0;
}

λmain

@

printf λ “hello\n”

seq

ret

0

1. lexical analysis (“front-end”)

2. evaluation (“back-end”)

1. 2.

Front-end: the parser

A parser is a function that takes as input a string of
symbols conforming to the rules of a formal grammar. If the
string is not a valid sentence in the language, the parser
rejects the string. If the string is a valid sentence in the
language, the parser accepts the string and outputs a data
structure that represents the meaning of the sentence.

For programming languages, meaning is generally
represented in the form of an abstract syntax tree (AST).
In an AST, conventionally, interior nodes are operations,
and leaves are data.

Front-end: the parser

The subject of today’s lesson.

Back-end: the evaluator

1. Interpreter
2. Compiler

There are two kinds of back-end:

eval

Interpretation

output

input

AST

Interpretation Downsides

• Usually (very) slow  

(often 100-200x slower than compilation)

LET IT BE KNOWN
FOR ALL ETERNITY

THAT PHARAOH
TUTANKHAMUN

LOVES PIZZA

Interpretation Advantages

• An interpreter is “just a program” so debugging a

language is the same as debugging any other

program.

Some interpreted languages

• Shell (e.g., bash)

• Python

• Ruby

• MATLAB

• R

• (sort of) Java and JavaScript

compile

Compilation

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

output (machine code)

AST

Compilation

x86

input

AST

output

compile

movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

output (machine code)

Some compiled languages
• C

• C++

• Go

• FORTRAN

• Java (sort of)

• C# (ditto)

• F# (ditto)

Compilation Advantages
• Usually (very) fast 

(only 1.5-2X slower than hand-optimized

assembly code)

• Compiled program is in machine (binary)

format; difficult to debug the language itself.

LET IT BE KNOWN
FOR ALL ETERNITY

THAT PHARAOH
TUTANKHAMUN

LOVES PIZZA

Compilation Example

Parsing

double position = initial + (rate * 60)

rate : double

*

60 : int

: double

+ : double

intial : double

Intemediate Representation

rate : double

*

60 : int

: double

+ : double

intial : double

temp1 = convert_int_to_double(60)
temp2 = mult(rate, temp1)
temp3 = add(initial, temp2)
position = temp3

“Optimization”

temp1 = mult(rate, 60.0)
position = add(initial, temp1)

temp1 = convert_int_to_double(60)
temp2 = mult(rate, temp1)
temp3 = add(initial, temp2)
position = temp3

Instruction Selection

temp1 = mult(rate, 60.0)
position = add(initial, temp1)

movf rate, fp2
mulf #60.0, fp2
movf initial, fp1
addf fp2, fp1
movf fp1, position

Compilation Downsides
• Compilation can take a long time

• Cannot modify program without source code.

• Hard to evolve language; compilers are

complex.

Some hybrid (JIT) languages

• Java (C#, F#)

• JavaScript

eval

JIT-Compilation

x86

input
movf 0x1233, fp2
mulf #60.0, fp2
movf $8(sp), fp1
addf fp2, fp1
movf fp1, $12(sp)

new program

AST

output

History

• Surprisingly, compilers were invented before

interpreters.

• More obvious to early engineers.

Compilers: History

• Invented by Grace
Hopper in 1952 while
working on the A-0
and FLOW-MATIC
languages.

• Work eventually
became the COBOL
programming
language, still widely
in use today.

I used to be a mathematics professor. At that time I found
there were a certain number of students who could not learn
mathematics. I then was charged with the job of making it
easy for businessmen to use our computers. I found it was
not a question of whether they could learn mathematics or
not, but whether they would. […] They said, ‘Throw those
symbols out — I do not know what they mean, I have not
time to learn symbols.’ I suggest a reply to those who would
like data processing people to use mathematical symbols
that they make them first attempt to teach those symbols to
vice-presidents or a colonel or admiral. I assure you that I
tried it. — Grace Hopper

Compilers: History Interpreters: History

• Invented by John
McCarthy in 1958
while working on
LISP.

• Invented as a
byproduct of
McCarthy’s thinking
about computation
from first principles.

• McCarthy wanted to
build computers that
could think!

• LISP was too resource
hungry for most uses at the
time.

eval

A PL is a program
that runs “user” programs

input

AST

When you write a PL, you have the opportunity to
act on that data.

Remember: user programs are data!

You can automate away problems like…

Garbage collection

A garbage collection algorithm is an algorithm that
determines whether the storage, occupied by a value
used in a program, can be reclaimed for future use.
Garbage collection algorithms are often tightly integrated
into a programming language runtime.

Garbage collection
$ head -n5 roster.csv
Angoluan,Simon
Avila-Hernandez,Natalia
Canora,Nick
Cape,Noah
Chen,Nicholas

class Student:
 first_name: str
 last_name: str

 def __init__(self, first_name: str, last_name: str):
 self.first_name = first_name
 self.last_name = last_name

 def canonical(self) -> str:
 return self.first_name + " " + self.last_name

if __name__ == '__main__':
 with open("roster.csv") as file:
 for line in file:
 (fname,lname) = line.rstrip().split(",")
 s: Student = Student(fname, lname)
 print(s.canonical())

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Li,Daisy”

…L i , D a i s y \n S m

“Daisy”
“Li”

__init__ fname
lname

self

first_name
last_name Student

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Li,Daisy”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Smith,Henry”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Smith,Henry”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

“Henry”
“Smith”

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Smith,Henry”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

“Henry”
“Smith”

__init__ fname
lname

self

first_name
last_name Student

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Smith,Henry”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

“Henry”
“Smith”

first_name
last_name Student

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Smith,Henry”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

“Henry”
“Smith”

first_name
last_name Student

No longer used!

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Smith,Henry”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

“Henry”
“Smith”

first_name
last_name Student

Worse: inaccessible!

“memory leak”

If we did not have GC

call stack heap

main

file
line
fname
lname
s

“Smith,Henry”

…L i , D a i s y \n S m

“Daisy”
“Li”

first_name
last_name Student

“Henry”
“Smith”

first_name
last_name Student

Worse: inaccessible!

“memory leak”

first_name
last_name Student

…We will eventually
run out of memory.

John McCarthy

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage
location “mark” bit

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

0

0

0

0

0

0

0

A

B

C

...

D

E

g()

f()

1

1

0

0

0

0

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

1

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

g()

f()

1

1

1

1

1

2. Free (“sweep”) unreachable cells

3. Clear tags

A

B

C

...

g()

f()

0

0

0

0

0

Garbage Collection
is undecidable.

Wait… what?!!!

Recap & Next Class

Today:

Next class:

Language architecture
Garbage collection

Midterm review

