
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 10: Proof by Reduction

Topics

Halting problem
Proof techniques

Reductions of HP to other problems

Your to-dos

1. Lab 5, due Wednesday 3/12 (partner lab)
2. Start studying for the midterm

Announcements

•CS Colloquium this Friday, Mar 14 @ 2:35pm in 
Wege Auditorium (TCL 123)

Effective Evaluations of Large Language Models 
for Complex Problems
Prof. Niranjan Balasubramanian (Stony Brook)

Evaluation efforts are central to understanding and improving 
the capabilities of Large Language Models on complex problems. 
In the first part of this talk, I will present a set of ideas 
to  create  effective  complex  reasoning  tasks  for  a  range  of 
tasks  such  as  question  answering,  theory-of-mind  analyses, 
procedure  understanding,  and  biomedical  natural  language 
inference. In the second half, I will present our recent work 
on developing a rigorous benchmark that can test automation for 
solving complex tasks involving commonly used apps. 



Decidability Problems

Computable: the algorithm returns an answer in a 
finite amount of time.

Total: the output of the algorithm is defined for 
every possible input.

A problem is decidable if it is both computable 
and total.

The Halting Problem
Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Clarifications:
P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

The Halting Problem

… helps us to understand the difficulty of many 
other problems.

The Halting Problem

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Decide whether program P halts on input x.



Notes on the proof

We use two key ideas:

• Function evaluation by substitution
• Reductio ad absurdum (proof form)

Function Evaluation by Substitution
def addone(x): 
   return x + 1

addone(1)

[1/x]x + 1

1 + 1

λx.(+ x 1)1

[1/x](+ x 1)

(+ 1 1)

22

The form of the proof is reductio ad absurdum.
Literally: “reduction to absurdity”.
Start with axioms and presuppose the 
outcome we want to show.
Then, following strict rules of logic, derive new facts.
Finally, derive a fact that contradicts another fact.
Conclusion: the presupposition must be false.

Reductio ad absurdum Reductio ad Absurdum

A1 A2 A3

H

T1

T2

¬A3

¬

😧
One of the axioms is "T ∧ ¬T is false.”



Reductio ad Absurdum The Halting Problem

Notes on the proof:

The proof relies on the kind of substitution 
that we’ve been using to “compute” functions 
in the lambda calculus.

Remember: we are looking to produce a 
contradiction.

The proof is hard to “understand” because the 
facts it derives don’t actually make sense. We 
don’t want them to make sense.

Don’t read too deeply.

The Halting Problem: Proof
Suppose:

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

Construct:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise

{Halt always
halts!

{
DNH 

does not
always halt!

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if Halt(P,P) is true, while(1){}
returns false otherwise



The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) is true.
DNH(P) will halt if Halt(P,P) is false.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if P(P) halts.
DNH(P) will halt if P(P) runs forever.

Rewrite:

DNH(P) = {if P(P) halts, run forever
halt

The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH(   ) will run forever if    (   ) halts.
DNH(   ) will halt if    (   ) runs forever.

P = DNH

P PP
P PP



The Halting Problem
Isn’t DNH itself a program?
What happens if we call DNH(DNH)?

DNH(   ) will run forever if    (   ) halts.
DNH(   ) will halt if    (   ) runs forever.

P = DNH

DNH DNHDNH
DNH DNHDNH

This literally makes no sense. Contradiction!

Therefore, the Halt function cannot exist.

What was our one assumption? Halt exists.

Need more explanation?
Watch this!

https://youtu.be/macM_MtS_w4

We can use the Halting Problem to show that other 
problems cannot be solved by reduction to the 
Halting Problem.
We cannot tell, in general…

… if a program will run forever.
… if a program will eventually produce an error.
… if a program is done using a variable.

Reductions

… if a program is a virus!
… and many more properties!

Reductions

A reduction is an algorithm that transforms an instance of 
one problem into an instance of another.  Reductions are 
often employed to prove something about a problem 
given a similar problem.

A Breducer

problem problem



Reductions
Reductions are often used in a counterintuitive way.

Bar Fooreducer

problem problem

For example, if we want to know whether problem Foo is 
impossible, we assume Foo is possible, and then use that 
fact to show that problem Bar (which we already know to 
be impossible) appears to be possible.

The above is a contradiction, meaning that Foo is not 
possible.

Reductions

An important part of a reduction is that the reducer be an 
ordinary algorithm.

The reducer should not solve the problem.  A reducer just 
converts problems from one form to another.

You can get a lot more exposure to reductions in CSCI 361.

Bar Fooreducer

problem problem

(this is a wonderful and mind-expanding idea and I’m glad I 
pushed myself to take a course on computability theory)

Reductions

2

Plus

1

3

The humble algorithm.

(sorry, vegetarians)

Reductions

2

Plus

1

Minus

3



Reductions

2

Plus

1

Minus

-2 1

-3

3
let reducer(x: int)(y: int) = -(-x-y)

Halt

true

int main(…){ 
… 
return 0 
}

1

Reductions

We know that Halt is not computable.

Halt0

true

int main(…){ 
… 
return 0 
}

Reductions

Is Halt0 computable?
A function f(i) halts not if and only if f does not halt on input i.

1

Reductions

A function f(i) halts not if and only if f does not halt on input i.

def halt(f, i): 
  return not halt0(f, i);

If Halt0 is computable, couldn’t we do this?

Assume that Halt0 is computable.
(e.g., it’s in your standard library)



Halt0

false

Reductions

Reduction: Construct Halt using Halt0.

Halt

true

int 
main(… 1

Halt

true

int main(…){ 
… 
return 0 
}

1

Reductions

We know that Halt is not computable.

Reductions

If we can build this new machine, 
what does that mean for Halt0?

Halt0 is not computable.

Halt0

true

Halt

false

int 
main(… 1

Why does this proof work?

The proof relies on the logical implication,

A ⇒ B

In plain language, we read this as “if A is true, then B is 
true.”

For example, one (true) logical implication is:

it is sunny ⇒ it is not cloudy



Why does this proof work?
But just look outside, and it is

Combined with “it is sunny ⇒ it is not cloudy”, 
what can we conclude?

Why does this proof work?

So logical implications can be used in two different ways.

A ⇒ B

If you know that A is true, then you also know that B is true.

If you know that B is false, then you also know that A is false.

Why does this proof work?

The proof relies on the logical implication,

 Halt0 is computable ⇒ Halt is computable

Which is clearly a true statement, since we can actually 
construct a function that computes Halt if we are given a 
function that computes Halt0.

But we know that Halt is not computable.

So…

Reduction Activity



Recap & Next Class

Today:

Next class:

Proof techniques

Reductions
Halting problem

How to construct a programming language


