
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 9: Computability

Topics

Function graphs
Last words about the lambda calculus

Decidability (maybe)

Your to-dos

1. Lab 5, due Wednesday 3/12 (partner lab)
2. Start studying for the midterm

Announcements

•CS Colloquium this Friday, Mar 5 @ 2:35pm in
Wege Auditorium (TCL 123)

Scalable Data Systems
Prof. Prashant Pandey (Northeastern)

Prashant builds scalable data systems with strong theoretical
guarantees and employs them to democratize next-generation data
analyses. His work applies to high-performance computing,
computational biology, stream processing, and storage.

Announcements
Order (mostly) does not matter

If E → E1 and E → E2

then E1 →* N and E2 →* N
for some N

E

E1 E2

N

Recall: confluence

Although reduction order “does not matter”
(because the LC is confluent), only the normal
order reduction is guaranteed to terminate for

expressions that have a normal form.

One caveat about reduction orders

(see LC, part 2 from packet for more detail)

Lambda Calculus with Addition Op
<expr> ::= <value>
 | <app>
 | <abs>
 | <par>
 | <add>
<value> ::= v ∈ ℕ
 | <var>
<var> ::= α ∈ { a .. z }
<app> ::= <expr><expr>
<abs> ::= λ<var>.<expr>
<par> ::= (<expr>)
<add> ::= (+ <expr> <expr>)

Operations: <app>, <abs>, and <add>.
Data: <value>.

Trouble finding redexes? Try this.

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2
1 2 3 3 2 2 3 4 4 3 2 1

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

When I say normal order, I mean: “outermost leftmost” application

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

When I say applicative order I mean: “innermost leftmost” application

Or use the AST

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

app

2abs

a app

abs app

z +

x z

abs a

z +

x z

Here’s a third one! Neither normal nor applicative.

Or use the AST

Which can I do? Any of them.

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Normal order:

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Applicative order:

(λa.(λz.(+ x z))((λz.(+ x z)) a)) 2Neither:

Translating real code to lambda expressions

def f(x):
 return 5 + x

λx.(+)5 x

λ

x +

5 x

Practice this one on your own time

(λx.xx)(λy.yx)z Computability

0

2

1

3

4

5

7

6

8

9

f(x) = x + 5

Intuition: total function

For every element in x, there is a corresponding
element in y. x maps to at most one element in y.

x

y
0

2

1

3

4

5/2

5

5/3

5/4

f(x) = 5/x

Intuition: partial function

x still maps to at most one element in y,
however, there is not a y for every x.

x

y

undefined

The graph of a function

f(x) = x + 5

{<x, x+5> | x ∈ ℤ}

{<x, x+5> | x is an integer}

The graph is not a chart!
It is a set, in set-builder notation.

f(x) = 5/x

{<x, 5/x> | x ∈ ℤ ∧ x ≠ 0}

The graph of a function

It is a set, in set-builder notation.
The graph is not a chart!

Undefinedness

x/0
Activity

Decidability Problems

A decidability problem is a question with a yes
or no answer about an input.

“Is x prime?”

Restated: is there an algorithm?

If there is no total function, then the problem is
referred to as undecidable.

Importantly, we want an algorithm that works for all
inputs in a domain. We want a total function.

Decidability Problems

“Is x prime?”

What do you think? Decidable or undecidable?

The algorithm does not need to be efficient.

Computable Problems

An algorithm should return an answer in a finite
amount of time.

Computability and totality are different things.

A problem is decidable if it is both computable
and total.

The Halting Problem
Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = {returns true if P(x) halts
returns false otherwise

How might this work?
Clarifications:

P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

Recap & Next Class

Today:

Next class:

More lambda calculus

Reductions

Function graphs

Decidability

