
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 6: The Dream of Computation

Topics

Syntax in Backus-Naur Form

Lambda calculus

What can computers really do?

A little more folding

Your to-dos

1. Lab 3, due Wednesday 2/26 (partner lab).
2. Read Higher Order Functions.
3. Prepare for Quiz 3.

Quiz 2

If you got >80%, nice work!

If you got <80%, let’s find a time to meet.



Announcements

•CS Colloquium this Friday, Feb 28 @ 2:35pm in 
Wege Auditorium (TCL 123)
Senior Thesis Proposals, Part 2

Announcements

•Course packet posted to website (see Handouts)

fold right
List.foldBack 

  (fun x acc -> acc+x) [1;2;3;4] 0
[1;2;3;4], acc = 0 

[1;2;3], acc = 0+4 

[1;2], acc = 4+3 

[1] acc = 7+2 

[], acc = 9+1 

returns acc = 10

what does this return?

List.foldBack 

  (fun x acc -> acc + string x) 

  (Seq.toList "williams") 

  ""



let cartesianProduct xs ys = 
  …

Cartesian product
Write a function that computes the Cartesian product 
of two sets, represented by lists:

A × B = { (a,b) | a ∈ A and b ∈ B }

Hint: We just learned about maps.

let rec flatten (xss: ('a*'b) list list) : ('a * 'b) list = 
    match xss with 
    | [] -> [] 
    | xs::xss' -> xs @ (flatten xss') 

let CartesianProduct (xs: 'a list) (ys: 'b list) = 
    List.map (fun x -> 
        List.map (fun y -> 
            (x,y) 
        ) ys 
    ) xs 
    |> flatten 

Write a function that computes the Cartesian product 
of two sets, represented by lists:

A × B = { (a,b) | a ∈ A and b ∈ B }

Hint: We just learned about maps.

Cartesian product

Language of languages

The York Plays (late 15th century) comprise one of the 
four complete surviving medieval play cycles 
sometimes known as ‘mystery cycles’. They are a 
series of short plays, known as ‘pageants’, which were 
performed by members of different craft guilds (groups 
of people practicing the same trade who formed a club) 
at locations throughout the city of York. —British Library



Why couldn’t you understand the script?
It’s written in English, after all!

• Appearance: syntax
• What is the set of valid symbols?
• What arrangements of symbols are 

permissible?
• Meaning: semantics

• What does a given arrangement of 
symbols correspond mean?

We don’t know the “ground rules” for the 
document as it is written:

Formal language

A formal language is the set of permissible sentences 
whose symbols are taken from an alphabet and whose 
word order is determined by a specific set of rules.

English is not a formal language.

Java is a formal language.

Intuition: a language that can be defined mathematically, 
using a grammar.

More formally
L(G) is the set of all sentences (a “language”) defined by 
the grammar, G.

G = (N, Σ, P, S) where
N is a set of nonterminal symbols.
Σ is a set of terminal symbols.

P is a set of production rules of the form 
  N ::= (Σ⋃N)*
  where * means “zero or more” (Kleene star) and
  where ⋃ means set union
S∈N denotes the “start symbol.”

Backus-Naur Form (BNF)
More concretely, for programming languages, we 

conventionally write G in a form called BNF.

John Backus Peter Naur
Invented in 1959 to describe the

ALGOL 60 programming language.



Tower of Hanoi (ALGOL 60) Backus-Naur Form (BNF)

Nonterminals, N, are in brackets: <expression>
Terminals, Σ, are “bare”:  x
A production rule, P, consists of the ::= operator, a 
nonterminal on the left hand side, and
a sequence of one or more symbols from N and Σ on the 
right hand side.

<variable> ::= x

We use ε to denote the empty string.

The | symbol means “alternatively”: <num> ::= 1 | 2

Backus-Naur Form (BNF)

You should read the following BNF expression:

<num> ::= <digit> 
       |  <num><digit>

as

“num is defined as a digit or as a num followed by a 
digit.”

Backus-Naur Form (BNF)

The following definition might look familiar:

<expr>  ::= <num> 
         |  <expr> + <expr> 
         |  <expr> - <expr> 
<num>   ::= <digit> 
         |  <num><digit> 
<digit> ::= 0|1|2|3|4|5|6|7|8|9

Conventionally, we ignore whitespace, but if it matters, 
use the ␣ symbol.  E.g.,

<expr>␣+␣<expr> 

<expr> is the start symbol.



Parsing and Parse Trees

Parsing is the process of analyzing a string of 
symbols, conforming to the rules of a formal 
grammar, to understand: 

1) whether that sentence is valid (s ∈ L(G)), or
2) the structure (e.g., “parts of speech”) of that 

sentence (a parse tree).

Derivation Tree

1+2+3

<e> ::= <n> | <e>+<e> | <e>-<e>
<n> ::= <d> | <n><d>
<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<e>

<e>+<e>

<e>+<e>

1

2 3

<n>

<d> <n>
<d>

<n>
<d>

Shows every step of how a sentence is parsed.

What can computers really do?

The Dream

“I thought again about my early plan of a new 
language or writing-system of reason, which 
could serve as a communication tool for all 
different nations... If we had such an universal 
tool, we could discuss the problems of the 
metaphysical or the questions of ethics in the 
same way as the problems and questions of 
mathematics or geometry. That was my aim: 
Every misunderstanding should be nothing 
more than a miscalculation (...), easily 
corrected by the grammatical laws of that new 
language. Thus, in the case of a controversial 
discussion, two philosophers could sit down at 
a table and just calculating, like two 
mathematicians, they could say, 'Let us check 
it up …’”

Wilhelm Gottfried Leibniz



The Dream

Wilhelm Gottfried Leibniz

“stepped reckoner”

“What is the answer to the ultimate 
question of life, the universe, and 

everything?

What is computable?

• Hilbert: Is there an algorithm 

that can decide whether any 
logical statement is valid?

• “Entscheidungsproblem” 

(literally “decision problem”)

• Leibniz thought so!

What is computable?
• Why do we care?

• f(x) = x + 1

• We can clearly do this with  

pencil and paper.

• ∫ 6x dx

• Also computable, in a different manner.

• We care because the computable functions can 

be done on a “computer.”



Lambda calculus
• Invented by Alonzo Church in  

order to solve  

the Entscheidungsproblem.

• Short answer to Hilbert’s 

question: no.

• Proof: No algorithm can decide equivalence of 

two arbitrary λ-calculus expressions.

• By implication: no algorithm can determine 

whether an arbitrary logical statement is valid.

What is the meaning of x in algebra?

Pro tip

Don’t try to “understand” the
lambda calculus.

Aside from “variable,” “function definition,” and 
“application,” it has no inherent meaning.

We ascribe meaning to it, just as we do with algebra.

The lambda calculus is simply a system for 
reasoning by using the logic of functions.

Lambda calculus grammar

<expr>  ::= <var> 

         |  <abs> 

         |  <app> 

<var>   ::= x 

<abs>   ::= λ<var>.<expr> 

<app>   ::= <expr><expr>

<expr> is the start symbol.



What is a variable?

<var>   ::= x

It’s just a value.

What is an abstraction?

<abs>   ::= λ<var>.<expr>

It’s a function definition

def foo(x): 

  <expr>

What is an application?

<app>   ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

argumentfunction

Parsing Lambda Expressions

λx.xx
<expression>

<abstraction>

<variable> <expression>

<application>

<variable>

<expression>

<variable>

x

x x

<expression>

Let’s try parsing this expression



Recap & Next Class

Today:

Next class:

BNF

Lambda calculus / computation

More on lambda calculus


