
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 5: Higher Order Functions

Topics

Higher order functions

Announcements

•CS Colloquium this Friday, Feb 21 @ 2:35pm in
Wege Auditorium (TCL 123)
Senior Thesis Proposals, Part 1

Announcements

•HW2 feedback… forgot to put link in lab writeup;
it’s there now, please fill out

Your to-dos

1. Lab 3, due Wednesday 2/26 (partner lab)
2. Reading: Higher Order Functions Quiz: debriefing

Higher order functions

Four amazing functional concepts

•First-class functions

•Higher-order functions

•map

•fold

a function

+1

3

4

“first class” function

Function definitions are values in a

functional programming language

functions and names are different

let f x = x + 1

is the same as

let f = fun x -> x + 1

let is for naming fun is for defining functions

We can combine these actions, but we don’t have to!

a function

+1

3

4

a function
2

4

3

5

6

1

3

2

4

5

map

Like a for loop, but without mutable variables

(fun x -> x + 1)

Intuition:

map

1

3

2

4

5

2

4

3

5

6

Key observation:

Intuition:

n things in, n things out

map

map

[1;2;3;4;5]
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

+1

5

6

[2;3;4;5;6]

map

Intuition:

map

List.map: (‘a -> ‘b) -> ‘a list -> ‘b list;

(aka “projection”)

map
List.map (fun x -> x + 1) [1;2;3;4];

2

+1

3

+1

4

+1

5

+1

[2;3;4;5]

pipelines

[2;8;22;4]

|> List.map (fun x -> x + 1)

|> List.map float

|> List.map (fun x -> x / 3.3)

|> List.sort

[0.9090909091; 1.515151515; 2.727272727;

6.96969697]

fold
structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr
 (car
 (cons
 (cons ‘a ‘b)
 (cons ‘c ‘d)
)
)
)

evaluation

fold

List.fold:

('a -> 'b -> 'a) -> 'a -> ‘b list -> 'a

(aka “reduce”)

fold

Intuition:

Key observation:
n things in, 1 thing out

fold

1

3

2

4

5

1

3

2

4

5

(fun acc x -> acc + x)

Intuition:

+

3 +

6 +

10+

0 + 1

15

fold left
List.fold (fun acc x -> acc+x) 0 [1;2;3;4]

acc = 0, [1;2;3;4]

acc = 0+1, [2;3;4]

acc = 1+2, [3;4]

acc = 3+3, [4]

acc 6+4, []

returns acc = 10

what does this return?

List.fold

 (fun acc x -> acc + string x)

 ""

 (Seq.toList "williams")

Activity: folding

• Write a function number_in_month that takes a list of dates

(where a date is int*int*int representing year, month,

and day) and an int month and returns how many dates are

in month

• Use List.fold

let number_in_month(ds: Date list)(month: int) : int =

fold

let number_in_month(ds: Date list)(month: int) : int =
 ds
 |> List.fold (fun acc (_,mm,_) ->
 if month = mm then
 acc + 1
 else
 acc
) 0

Recap & Next Class

Today:

Next class:

Higher order functions

Lambda Calculus

