
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4: Algebraic Data Types

Announcements

•No announcements.

Topics

Avoiding errors
Algebraic data types

Pattern matching

Your to-dos

1. Lab 2, due Wednesday 2/19 by midnight
1. partner lab: make sure you hand in

collaborators.txt whether you work with
a partner or not

2. No copy/paste of code.
3. pushcheck will remind you

2. Read F#: The Cool Stuff
3. First real quiz on Thursday.

Pattern Matching

A pattern is built from

•values,

• (de)constructors,

•and variables

Tests whether values match “pattern”

If match, binds values to variables in pattern

Pattern matching

• Most basic pattern form
– let <pattern> = <exp>

• Examples
• without pattern

– let tuple = ("moo", “cow")

• with pattern

– let (x,y) = ("moo", “cow")

• without pattern

– let myList = [1; 2; 3]

• with pattern

– let w::rest = [1; 2; 3]
– let v::_ = myList

Patterns in declarations Pattern matching

let rec sum (xs: int list) : int =
 if xs = [] then
 0
 else
 (List.head xs) + sum (List.tail xs)

let rec sum (xs: int list) : int =
 match xs with
 | [] -> 0
 | y::ys -> y + sum ys

Using patterns…

• Remember, a list is one of two things:
– []
– <first elem> :: <rest of elems>
– E.g., [1; 2; 3] = 1::[2,3] = 1::2::[3]
= 1::2::3::[]

• Can define function by cases…

Another example

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs

Activity: pattern matching on integers

Write a function listOfInts that returns a list
of integers from zero to n.

Oops! This returns the list backward.

Let’s flip it around.

let rec listOfInts n =
 match n with
 | 0 -> [0]
 | i -> i :: listOfInts (i - 1)

Revisiting local declarations

Let’s fix our code the lazy way…

let listOfInts n =
 let rec li n =
 match n with
 | 0 -> [0]
 | i -> i :: li (i - 1)
 li n |> List.rev

… by defining a function inside our function.

Patterns can be used for any data structure

•literal values

• lists

• tuples

•records

•ADTs

•and combinations of these!

Algebraic Data Types*

*not to be confused with Abstract Data Types!

Algebraic Data Type

An algebraic data type is a composite data type, made by
combining other types in one of two different ways:

• by product, or
• by sum.

You’ve already seen product types: tuples and records.

We’ll focus on sum types.

So-called b/c the set of all possible values of such a type
is the cartesian product of its component types.

• Invented by Rod Burstall at
University of Edinburgh in ‘70s.

• Part of the HOPE programming
language.

• Pattern matching and ADTs are
better together.

Algebraic Data Types A “move” function in a game

north

south

eastwest

public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

A “move” function in a game (Java)

public … move(int x, int y, int dir) {
 switch (dir) {
 case NORTH: ...
 case ...
 }
}

type Direction =
 North | South | East | West;

let move coords dir =
 match coords,dir with
 |(x,y),North -> (x,y - 1)
 |(x,y),South -> (x,y + 1)

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

A “move” function in a game (Java)
Discriminated Union (sum type)

• Pattern match to extract parameters

type Shape =
 | Rectangle of float * float
 | Circle of float

let s = Rectangle(1.0,4.0)
match s with
| Rectangle(w,h) -> …
| Circle(r) -> …

Parameters

• Names are really only useful for initialization, though.

let s = Rectangle(height = 1.0, width = 4.0)

Named parameters

type Shape =
 | Rectangle of width: float * height: float
 | Circle of radius: float

type MyList<'a> =
 | Empty
 | NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;
 val it : MyList<int> = NonEmpty (2,Empty)

ADTs can be recursive and generic Avoiding errors

Exploding programs is no fun.

Validate input so that users don’t get hit by shrapnel.

let divide quot div = quot/div

A function that throws an exception

> divide 14 7;;

val it : int = 2

> divide 6 0;;

System.DivideByZeroException: Attempted to
divide by zero.
…
Stopped due to error

A function that throws an exception

• F# has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

Avoiding errors with ADTs

type option<‘a> =
| None
| Some of 'a

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (quot/div)

Avoiding errors with ADTs

> divide 14 7;;

val it : int option = Some 2

> divide 6 0;;

val it : int option = None

>

Avoiding errors with ADTs

• Why option?

• option is a data type; 

not handling errors is a static type error!

• In other words, the user of our divide function

must handle the error.

Option type

let divide quot div =
 match div with
 | 0 -> None
 | _ -> Some (quot/div)

[<EntryPoint>]
let main args =
 let quot = int args[0]
 let divisor = int args[1]
 let result = divide quot divisor
 match result with
 | Some z -> printfn "Oh good: %d” z
 | None -> printfn "Bad numbers!”
 0

Option type

Exceptions

let divide quot div = quot/div

We could have used exception, right?
let divide quot div = quot/div

[<EntryPoint>]
let main args =
 let quot = int args[0]
 let divisor = int args[1]
 try
 let dividend = divide quot divisor
 printfn "%d" dividend
 0
 with
 | :? System.DivideByZeroException ->
 printfn "No way, dude!"
 1

Exception handling

• When do I use each one?

‣ option prevents errors at compile time.

‣ Exceptions prevent errors at runtime.

Option vs Exceptions Recap & Next Class

Today:

Next class:
Higher-order functions

Option vs exceptions
Algebraic data types
Pattern matching

