Topics

CSCI 334:

Principles of Programming Languages What to expect in this course

What this course is about

Lecture 1: Intro to F# Things to know for this week’s assignment

Instructor: Dan Barowy
Williams

Every week:

1. Readings to do before doing the lab.
Read actively.
2. Labs due every Wednesday at midnight.
Syllabus and Honor Code Know how to get your lab.
3. In-class quiz every Thursday.
If you did the reading and the lab yourself,
this should not worry you much.

~own -

Your to-dos

Read the syllabus.

Lab 1, due Wednesday 2/12.

Be sure to do the assigned readings.

If you plan to use lab computers, check that you
can login today.

Only Lida/Kelsey can help you with account
problems. They are well-adjusted people who
work 9am-5pm during the work week.

If you don’t remember your login...

Email csaccounts @williams.edu

If you don’t know/remember the
TCL 312/TBL 301 door code...

Why do | study programming languages?

mailto:csaccounts@williams.edu

A Bicycle for the Mind A Bicycle for the Mind

1

A computer is a key part of this “bicycle”—but not all of it.

A Bicycle for the Mind

® 06 Untitled

@ Ow N)
Record Stop Run Compile Bundle Contents |
AppleScript 4| <No selected element> d

tell application "Finder"
display dialog "Hello World"

end tell

Events Replies | @00

The other key part is a programming language.

FlashFill

FFE Conferences ~ Sign In
USENIX

' ATTEND PROGRAM PARTICIPATE SPONSORS ABOUT
ATC ‘22

Riker: Always-Correct and Fast Incremental Builds from
Simple Specifications

Authors:

/I College; Daniel W. Barowy, Williams College
Awarded Best Paper!

Build systems are responsible for building software correctly and quickly. Unfortunately, traditional build tools like make are correct and fast only when

pers precisely enumerate dep ies for every incremental build step. Forward build systems improve correctness over traditional build tools by
discovering dependencies automatically, but existing forward build tools have two fundamental flaws. First, they are incorrect; existing forward build tools
miss dependencies because their models of system state are incomplete. Second, they rely on users to manually specify incremental build steps, increasing
the programmer burden for fast builds.

This paper introduces Riker, a forward build system that guarantees fast, correct builds. Riker builds are easy to specify; in many cases a single command
such as gec *.c suffices. From these simple specifications, Riker automatically discovers fast incremental rebuild opportunities. Riker models the entire POSIX
filesystem—not just files, but directories, pipes, and so on. This model guarantees that every dependency is checked on every build so every output is correct.

We use Riker to build 14 open source packages including LLVM and memcached. Riker incurs a median overhead of 8.8% on the initial full build. On average,
Riker's incremental builds realize 94% of make's incremental speedup with no manual effort and no risk of errors.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins.
Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTexX

[curtsinger PoF

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

€ isiion | | Ep2iaiion | | € HioriN

Award: Best Paper

Class outcomes

1. Speak the language of languages
a. understand the role of a language model
b. evaluate fithess of language for purpose
c. rapidly learn new languages

2. Add tools to your mental toolbox
a. techniques for clear thinking
b. become a much better programmer

“novice programmer” “novice computer
scientist” / “adequate
programmer”

Computer Science Course Prereg

“can think abstractly”

237
\ 334 377 .
337T /‘\ " 356T
\ 378
“competent hacker” ‘\\
Alleiy

" “master of abstract

thinking”

134 136

331

333

336T

26

“master of
programming”

Class outcomes

1. Speak the language of languages
a. understand the role of a language model
b. evaluate fitness of language for purpose
c. rapidly learn new languages

2. Add tools to your mental toolbox
a. techniques for clear thinking
b. become a much better programmer

3. Be your favorite class!

| always care about what you think

1. Optional feedback on assignments (for bonus
credit!)

2. Optional, anonymous feedback form on course
website

push-checker

*To trigger:
$ git commit -m “check”
$ git push F# as ML
+ A checklist will appear in your repo’s issues tab.
*You get 1 attempt per day.
(lab 1 gets 10 attempts per day)
“Free your mind” ML
1950 ...
1960 I._.I§E
1970 '.\)I.L.
1980M| T T I e T
1990 H;:;S? Standard ML ()CCalgwnLI Java eeseees
2000 l.:.# C#

Two F# environments

F# REPL

$ dotnet fsi

Microsoft (R) F# Interactive version 12.8.0.0 for F# 8.0
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

>

Type #quit;;to quit.

Use the REPL as a code playground.

Making a project

$ dotnet new console -lang f#

Use a project for homework.

Homework workflow

Clone your repository.

cd to the question you want to work on.

Create a project in that directory.

Write, build, and test your code.

git commit when you’ve reached a checkpoint.
git push when you want to upload your code.
Go to step 2 unless done.

N Ok WN =

Expressions vs statements

Arithmetic operators

operation syntax
add +
subtract -
multiply *
divide /
modulus s
exponent *x

Logical operators

operation syntax
and &&
or |1
not not
equals =
not equals <>

inequalities

Immutability vs mutability

Pure vs side-effecting functions

Strong, static vs weak, dynamic types

Other things

unit datatype

static void main(String[] args) { .. }

let main args = ..

unit datatype

> void main (String[] args) { ..

let main(args: string[]) = ..

Remember: every expression must return a value.
A function can’t return nothing.

unit datatype

bid main (String[] args)

let main(args: string[]) : unit = ..

Therefore, “nothing” is a thing... called unit.

unit datatype

$ dotnet fsi

Microsoft (R) F# Interactive version 10.2.3 for F# 4.5
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;
> unit;;

unit;;

N

stdin(l,1): error FS0039: The value or constructor 'unit' is
not defined.

> ()i
val it : unit = ()

>

How does one obtain a value of unit? ()

By the way...

let main(args: string[]) : unit = ..

By the way...

let main(args: string[]) : int = .. GO praCtice

Recap & Next Class

Today:
Course goals

Course structure
Basic F#

Next class:

Recursive functions

