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CSCI 334: Spring 2025

The second midterm is cumulative, drawing from all topics covered throughout the semester. More emphasis
will be placed on topics from the second half of the semester.

First half Second half
What is a Programming Language? Gumptionology 101
An Introduction to F# Beating the Averages
More F# Parsing
F#: The Cool Stuff Evaluation
Higher Order Functions Implementing Variables
Syntax Implementing Scope
Lambda Calculus, Part 1 and Part 2 Type Inference (handout)
Function Graphs (handout)

Q1. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminology
You should do this exercise on your own.

Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F# Coding
Write a function:

isPalindrome: string -> bool

that returns true if the given string is a palindrome, otherwise false. Recall that a palindrome is a
string that reads the same forwards and backwards.

Here is a simple recursive solution.

let isPalindrome (s: string) : bool =
let rec isP (i: int)(j: int) : bool =

if i >= j then
true

elif s[i] = s[j] then
isP (i+1) (j-1)

else
false

isP 0 ((String.length s) - 1)



Q3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lambda Calculus Reductions
Reduce the following expressions. If the expression does not have a normal form, explain why.

(a)

(λf.fz)(λx.x) given
((λx.x)z) β-reduce (λx.x) for f

((z)) β-reduce z for x
z eliminate parens

(b)

(λx.λy.x(yy))λz.z given
(λy.(λz.z)(yy)) β-reduce (λz.z) for x

(λy.(yy)) β-reduce (yy) for z
λy.yy eliminate parens

(c) Observe here that I am careful to use the normal order reduction. This expression has no normal
form because we end up deriving a subexpression that contains our given, which means that our
derivation will never terminate.

(λx.λy.xxy)(λx.λy.xxy) given
(λa.λy.aay)(λx.λy.xxy) α-reduce a for x
(λa.λb.aab)(λx.λy.xxy) α-reduce b for y

(λb.(λx.λy.xxy)(λx.λy.xxy)b) β-reduce (λx.λy.xxy) for a
... ...

(d)

(λf.λx.fx)(λy.z)((λx.xx)(λx.xx)) given
(λx.(λy.z)x)((λx.xx)(λx.xx)) β-reduce (λy.z) for f

(λx.(z))((λx.xx)(λx.xx)) β-reduce x for y
(λx.z)((λx.xx)(λx.xx)) eliminate parens
(λa.z)((λx.xx)(λx.xx)) α-reduce a for x

(z) β-reduce ((λx.xx)(λx.xx)) for a
z eliminate parens

Q4. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Partial and Total Functions
(a) Partial function: {⟨n, fibonacci n⟩ | n ∈ Z ∧ n ≥ 0}
(b) Looking at our gcd function, the only operation that might be problematic is %. The mathy defi-

nition is that mod is defined for all divisors and quotients in Z. Some programming languages,
like C, assume that the quotient and divisor are not negative, and will give the wrong answer
otherwise (eek!). But if we stick with the mathy definition (instead of C), then gcd appears to
be undefined nowhere (because the case where b = 0 is explicitly handled and defined), so the
function is total: {⟨a, b, gcd a b⟩ | a, b ∈ Z}

(c) Total function: {⟨x, |x|⟩ | x ∈ Z}

One can use function graphs to enforce preconditions when implementing the above functions. These
are also a concise form of documentation that you might consider putting into a Javadoc or Python
docstring. Other programmers (or “future you”) will thank you.



Q5. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parsing and Evaluation
Here is one possible solution.

open Combinator

type Expr =
| Increment
| Decrement
| MoveLeft
| MoveRight
| Print

type State = { tape: int list; pos: int }

let op =
(

(pchar '+' |>> fun _ -> Increment) <|>
(pchar '-' |>> fun _ -> Decrement) <|>
(pchar '<' |>> fun _ -> MoveLeft) <|>
(pchar '>' |>> fun _ -> MoveRight) <|>
(pchar 'p' |>> fun _ -> Print)

) <!> "op"

let expr = pmany0 op <!> "expr"

let grammar = pleft expr peof <!> "grammar"

let rec getAtIndex xs i =
match xs with
| [] -> failwith "Cannot find index in list."
| y::_ when i = 0 -> y
| _::ys -> getAtIndex ys (i - 1)

let rec updateAtIndex xs i v =
match xs with
| [] when i <> -1 -> failwith "Cannot find index in list."
| [] -> []
| _::ys when i = 0 -> v::ys
| y::ys -> y::updateAtIndex ys (i - 1) v

let parse input =
let i = prepare input
match grammar i with
| Success(ast,_) -> Some ast
| Failure(_,_) -> None

let ephsPrint v =
let s =

match v with
| 0 -> "a"
| 1 -> "b"
| 2 -> "c"
| 3 -> "d"
| 4 -> "e"



| 5 -> "f"
| 6 -> "g"
| 7 -> "h"
| 8 -> "i"
| 9 -> "j"
| 10 -> "k"
| 11 -> "l"
| 12 -> "m"
| 13 -> "n"
| 14 -> "o"
| 15 -> "p"
| 16 -> "q"
| 17 -> "r"
| 18 -> "s"
| 19 -> "t"
| 20 -> "u"
| 21 -> "v"
| 22 -> "w"
| 23 -> "x"
| 24 -> "y"
| 25 -> "z"
| _ -> "poo"

printf "%s" s

let evalOp (e: Expr)(s: State) : State =
match e with
| Increment ->

let cur = getAtIndex s.tape s.pos
let upd = cur + 1
let tape' = updateAtIndex s.tape s.pos upd
{ s with tape = tape' }

| Decrement ->
let cur = getAtIndex s.tape s.pos
let upd = cur - 1
let tape' = updateAtIndex s.tape s.pos upd
{ s with tape = tape' }

| MoveLeft ->
if s.pos > 0 then

{ tape = s.tape; pos = s.pos - 1 }
else

printfn "Tape head out-of-bounds (on left)."
exit 1

| MoveRight ->
if s.pos < 10 then

{ tape = s.tape; pos = s.pos + 1 }
else

printfn "Tape head out-of-bounds (on right)."
exit 1

| Print ->
let cur = getAtIndex s.tape s.pos
ephsPrint cur
s

let rec eval (es: Expr list)(s: State) : State =



match es with
| [] -> s
| op::ops ->

let s' = evalOp op s
eval ops s'

[<EntryPoint>]
let main args =

let file = args[0]
let input = System.IO.File.ReadAllText file
let ast_maybe = parse input
match ast_maybe with
| Some ast ->

eval ast { tape = [0;0;0;0;0;0;0;0;0;0]; pos = 0 } |> ignore
0

| None ->
printfn "Invalid program"
1



Q6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Type Inference
Infer the type of the following function.

let f (x: int) y = string (x + 1) + y

We start by turning the F# function into a lambda expression. Putting the function calls string and
+ in prefix form clarifies their relationship to their arguments.

λ

x λ

y @

@

+ @

string @

@

+ x

1

y

It can sometimes be hard to see how a curried function, like +, ends up appearing in an AST. First,
recognize that + takes two curried arguments, which means it must have two applications. Second,
remember that the rightmost argument must be higher in the subtree, because the leftmost argument
is the first one applied.
Let’s now label the tree with all of the known and unknown types.

λ: i

x : a λ: h

y : f @ : g

@ : e

+ : string -> string -> string @ : d

string : int -> string @ : c

@ : b

+ : int -> int -> int x : a

1 : int

y : f



You might be wondering how I knew that the inner most + took ints while the outermost + took
strings. The Hindley-Milner algorithm will try all combinations of possible + expressions. However,
since I am human, and I don’t like doing lots of extra writing, by carefully examining the tree one can
see that in each case only one choice will work. If you feel like being a stickler for detail, feel free to
work through it yourself.
Let’s put the above tree into tabular form, find all of the constraints, and solve for the unknown types.
The constraints were generated by asking whether the subexpression is an abstraction, an application,
or something else.

subexpression type constraint
+ (inner) int -> int -> int n/a

x a n/a
+ x b int -> int -> int = a -> b
1 int n/a

string int -> string n/a
+ x 1 c b = int -> c

+ (outer) string -> string -> string n/a
string (+ x 1) d int -> string = c -> d

+ string (+ x 1) e string -> string -> string = d -> e
y f n/a

(+ string (+ x 1) y) g e = f -> g
λy.(+ string (+ x 1) y) h h = f -> g
λx.λy.(+ string (+ x 1) y) i i = a -> h

There’s a lot going on here! But if we work through carefully, we can solve this. Let’s start at the top.

(a) If we substitute b = int -> c into int -> int -> int = a -> b, we get int -> int -> int
= a -> int -> c. That tells us that a = int and c = int.

(b) Returning to b = int -> c, we also now know that b = int -> int.
(c) If we take int -> string = c -> d with c = int, we derive d = string.
(d) If we substitute d = string into string -> string -> string = d -> e, we can conclude that

e = string -> string.
(e) If e = f -> g and e = string -> string, then f = string and g = string.
(f) If h = f -> g, f = string, and g = string, then h = string -> string.
(g) If i = a -> h, a = int, and h = string -> string, then i = int -> string -> string.
(h) Therefore, the function f : int -> string -> string. Does our work check out in dotnet

fsi?

> let f (x: int) y = string (x + 1) + y;;
val f: x: int -> y: string -> string

Yes!



Q7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global Variables
Suppose you have the following program, in a language with globally-scoped variables, where := stands
for assignment.

x := 2
y := x := x + 1
y := y + x
print y + x

The tree below shows values as they propagate upward. The result of evaluation is that the program
both prints 9 and returns 9.

seq

:=

x 2

:=

y :=

x +

x 1

:=

y +

y x

print

+

y x

{x ← 2} 2

{ } 2

{x ← 3,
y ← 3} 3

{x ← 3} 3

{x ← 2} 1

{x ← 2} 2 {x ← 2} 3

{x ← 3,
y ← 6} 6

{x ← 3,
y ← 3} 6

{x ← 3,
y ← 3} 3

{x ← 3,
y ← 3} 3

{x ← 3,
y ← 6} 9

{x ← 3,
y ← 6} 9

{x ← 3,
y ← 6} 6

{x ← 3,
y ← 6} 3


